Physics-Informed Diffusion Models for SAR Ship Wake Generation from Text Prompts
- URL: http://arxiv.org/abs/2504.20241v1
- Date: Mon, 28 Apr 2025 20:21:05 GMT
- Title: Physics-Informed Diffusion Models for SAR Ship Wake Generation from Text Prompts
- Authors: Kamirul Kamirul, Odysseas Pappas, Alin Achim,
- Abstract summary: We develop a diffusion model trained on data generated by a physics-based simulator.<n>The model generates realistic Kelvin wake patterns and significantly achieves faster inference than the physics-based simulator.<n>These results highlight the potential of diffusion models for fast and controllable wake image generation.
- Score: 4.4173427917548524
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Detecting ship presence via wake signatures in SAR imagery is attracting considerable research interest, but limited annotated data availability poses significant challenges for supervised learning. Physics-based simulations are commonly used to address this data scarcity, although they are slow and constrain end-to-end learning. In this work, we explore a new direction for more efficient and end-to-end SAR ship wake simulation using a diffusion model trained on data generated by a physics-based simulator. The training dataset is built by pairing images produced by the simulator with text prompts derived from simulation parameters. Experimental result show that the model generates realistic Kelvin wake patterns and achieves significantly faster inference than the physics-based simulator. These results highlight the potential of diffusion models for fast and controllable wake image generation, opening new possibilities for end-to-end downstream tasks in maritime SAR analysis.
Related papers
- The Artificial Scientist -- in-transit Machine Learning of Plasma Simulations [33.024345484180024]
We demonstrate a streaming workflow in which simulation data is streamed directly to a machine-learning (ML) framework.
With the presented workflow, data operations can be performed in common and easy-to-use programming languages.
arXiv Detail & Related papers (2025-01-06T20:58:27Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
This paper presents a physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics.
The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data.
arXiv Detail & Related papers (2024-05-31T20:05:17Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - Lamarr: LHCb ultra-fast simulation based on machine learning models deployed within Gauss [0.0]
We discuss Lamarr, a framework to speed-up the simulation production parameterizing both the detector response and the reconstruction algorithms of the LHCb experiment.
Deep Generative Models powered by several algorithms and strategies are employed to effectively parameterize the high-level response of the single components of the LHCb detector.
arXiv Detail & Related papers (2023-03-20T20:18:04Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - SUPA: A Lightweight Diagnostic Simulator for Machine Learning in
Particle Physics [0.0]
SUPA is an algorithm and software package for generating data by simulating simplified particle propagation, scattering and shower development in matter.
The proposed simulator generates thousands of particle showers per second on a desktop machine, a speed up of up to 6 orders of magnitudes over Geant4.
arXiv Detail & Related papers (2022-02-10T13:14:12Z) - Cognitive simulation models for inertial confinement fusion: Combining
simulation and experimental data [0.0]
Researchers rely heavily on computer simulations to explore the design space in search of high-performing implosions.
For more effective design and investigation, simulations require input from past experimental data to better predict future performance.
We describe a cognitive simulation method for combining simulation and experimental data into a common, predictive model.
arXiv Detail & Related papers (2021-03-19T02:00:14Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.