Intelligent Task Offloading in VANETs: A Hybrid AI-Driven Approach for Low-Latency and Energy Efficiency
- URL: http://arxiv.org/abs/2504.20735v1
- Date: Tue, 29 Apr 2025 13:20:02 GMT
- Title: Intelligent Task Offloading in VANETs: A Hybrid AI-Driven Approach for Low-Latency and Energy Efficiency
- Authors: Tariq Qayyum, Asadullah Tariq, Muhammad Ali, Mohamed Adel Serhani, Zouheir Trabelsi, Maite López-Sánchez,
- Abstract summary: Vehicular Ad-hoc Networks (VANETs) are integral to intelligent transportation systems.<n>VANETs enable vehicles to offload computational tasks to nearby roadside units (RSUs) and mobile edge computing (MEC) servers for real-time processing.<n>This research proposes a hybrid AI framework that integrates supervised learning, reinforcement learning, and Particle Swarm Optimization (PSO) for intelligent task offloading and resource allocation.
- Score: 2.1877558143992184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vehicular Ad-hoc Networks (VANETs) are integral to intelligent transportation systems, enabling vehicles to offload computational tasks to nearby roadside units (RSUs) and mobile edge computing (MEC) servers for real-time processing. However, the highly dynamic nature of VANETs introduces challenges, such as unpredictable network conditions, high latency, energy inefficiency, and task failure. This research addresses these issues by proposing a hybrid AI framework that integrates supervised learning, reinforcement learning, and Particle Swarm Optimization (PSO) for intelligent task offloading and resource allocation. The framework leverages supervised models for predicting optimal offloading strategies, reinforcement learning for adaptive decision-making, and PSO for optimizing latency and energy consumption. Extensive simulations demonstrate that the proposed framework achieves significant reductions in latency and energy usage while improving task success rates and network throughput. By offering an efficient, and scalable solution, this framework sets the foundation for enhancing real-time applications in dynamic vehicular environments.
Related papers
- Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey [9.21746609806009]
We explore the potential of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) frameworks to optimize computational offloading through adaptive, real-time decision-making.<n>The paper focuses on key aspects such as standardized learning models, optimized reward structures, and collaborative multi-agent systems, aiming to advance the understanding and application of DRL in vehicular networks.
arXiv Detail & Related papers (2025-02-10T19:02:20Z) - Reinforcement Learning Controlled Adaptive PSO for Task Offloading in IIoT Edge Computing [0.0]
Industrial Internet of Things (IIoT) applications demand efficient task offloading to handle heavy data loads with minimal latency.<n>Mobile Edge Computing (MEC) brings computation closer to devices to reduce latency and server load.<n>We propose a novel solution combining Adaptive Particle Swarm Optimization (APSO) with Reinforcement Learning, specifically Soft Actor Critic (SAC)
arXiv Detail & Related papers (2025-01-25T13:01:54Z) - Secure Resource Allocation via Constrained Deep Reinforcement Learning [49.15061461220109]
We present SARMTO, a framework that balances resource allocation, task offloading, security, and performance.<n>SARMTO consistently outperforms five baseline approaches, achieving up to a 40% reduction in system costs.<n>These enhancements highlight SARMTO's potential to revolutionize resource management in intricate distributed computing environments.
arXiv Detail & Related papers (2025-01-20T15:52:43Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.<n>In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.<n>The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - PeersimGym: An Environment for Solving the Task Offloading Problem with Reinforcement Learning [2.0249250133493195]
We introduce PeersimGym, an open-source, customizable simulation environment tailored for developing and optimizing task offloading strategies within computational networks.
PeersimGym supports a wide range of network topologies and computational constraints and integrates a textitPettingZoo-based interface for RL agent deployment in both solo and multi-agent setups.
We demonstrate the utility of the environment through experiments with Deep Reinforcement Learning agents, showcasing the potential of RL-based approaches to significantly enhance offloading strategies in distributed computing settings.
arXiv Detail & Related papers (2024-03-26T12:12:44Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.<n>We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.<n>We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - A Fast Task Offloading Optimization Framework for IRS-Assisted
Multi-Access Edge Computing System [14.82292289994152]
We propose a deep learning-based optimization framework called Iterative Order-Preserving policy Optimization (IOPO)
IOPO enables the generation of energy-efficient task-offloading decisions within milliseconds.
Experimental results demonstrate that the proposed framework can generate energy-efficient task-offloading decisions within a very short time period.
arXiv Detail & Related papers (2023-07-17T13:32:02Z) - DClEVerNet: Deep Combinatorial Learning for Efficient EV Charging
Scheduling in Large-scale Networked Facilities [5.78463306498655]
Electric vehicles (EVs) might stress distribution networks significantly, leaving their performance degraded and jeopardized stability.
Modern power grids require coordinated or smart'' charging strategies capable of optimizing EV charging scheduling in a scalable and efficient fashion.
We formulate a time-coupled binary optimization problem that maximizes EV users' total welfare gain while accounting for the network's available power capacity and stations' occupancy limits.
arXiv Detail & Related papers (2023-05-18T14:03:47Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.