A Survey on Event-based Optical Marker Systems
- URL: http://arxiv.org/abs/2504.20736v1
- Date: Tue, 29 Apr 2025 13:21:03 GMT
- Title: A Survey on Event-based Optical Marker Systems
- Authors: Nafiseh Jabbari Tofighi, Maxime Robic, Fabio Morbidi, Pascal Vasseur,
- Abstract summary: Event-based optical markers have recently opened up a wide field of possibilities.<n>We analyze the basic principles and technologies on which these systems are based.<n>We describe the most relevant applications of EBOMS, including object detection and tracking, pose estimation, and optical communication.
- Score: 7.425975002659447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of event-based cameras, with their low latency, high dynamic range, and reduced power consumption, marked a significant change in robotic vision and machine perception. In particular, the combination of these neuromorphic sensors with widely-available passive or active optical markers (e.g. AprilTags, arrays of blinking LEDs), has recently opened up a wide field of possibilities. This survey paper provides a comprehensive review on Event-Based Optical Marker Systems (EBOMS). We analyze the basic principles and technologies on which these systems are based, with a special focus on their asynchronous operation and robustness against adverse lighting conditions. We also describe the most relevant applications of EBOMS, including object detection and tracking, pose estimation, and optical communication. The article concludes with a discussion of possible future research directions in this rapidly-emerging and multidisciplinary field.
Related papers
- Multi-modal Multi-platform Person Re-Identification: Benchmark and Method [58.59888754340054]
MP-ReID is a novel dataset designed specifically for multi-modality and multi-platform ReID.<n>This benchmark compiles data from 1,930 identities across diverse modalities, including RGB, infrared, and thermal imaging.<n>We introduce Uni-Prompt ReID, a framework with specific-designed prompts, tailored for cross-modality and cross-platform scenarios.
arXiv Detail & Related papers (2025-03-21T12:27:49Z) - Event-based Sensor Fusion and Application on Odometry: A Survey [2.3717744547851627]
Event cameras offer advantages in environments characterized by high-speed motion, low lighting, or wide dynamic range.<n>These properties render event cameras particularly effective for sensor fusion in robotics and computer vision.
arXiv Detail & Related papers (2024-10-20T19:32:25Z) - Event-based vision on FPGAs -- a survey [0.0]
Field programmable gate Arrays (FPGAs) have enabled fast data processing (even in real-time) and energy efficiency.
This paper gives an overview of the most important works, where FPGAs have been used in different contexts to process event data.
It covers applications in the following areas: filtering, stereovision, optical flow, acceleration of AI-based algorithms for object classification, detection and tracking, and applications in robotics and inspection systems.
arXiv Detail & Related papers (2024-07-11T10:07:44Z) - Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
Event-based cameras, inspired by the biological retina, have evolved into cutting-edge sensors distinguished by their minimal power requirements, negligible latency, superior temporal resolution, and expansive dynamic range.
Event-based cameras address limitations by eschewing extraneous data transmissions and obviating motion blur in high-speed imaging scenarios.
This paper offers an exhaustive review of research and applications particularly in the autonomous driving context.
arXiv Detail & Related papers (2024-07-05T06:17:00Z) - Optical Quantum Sensing for Agnostic Environments via Deep Learning [59.088205627308]
We introduce an innovative Deep Learning-based Quantum Sensing scheme.
It enables optical quantum sensors to attain Heisenberg limit (HL) in agnostic environments.
Our findings offer a new lens through which to accelerate optical quantum sensing tasks.
arXiv Detail & Related papers (2023-11-13T09:46:05Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOT is an event-based multi-object tracker.
SpikeMOT uses spiking neural networks to extract sparsetemporal features from event streams associated with objects.
arXiv Detail & Related papers (2023-09-29T05:13:43Z) - Decisive Data using Multi-Modality Optical Sensors for Advanced
Vehicular Systems [1.3315340349412819]
This paper focuses on various optical technologies for design and development of state-of-the-art out-cabin forward vision systems and in-cabin driver monitoring systems.
The focused optical sensors include Longwave Thermal Imaging (LWIR) cameras, Near Infrared (NIR), Neuromorphic/ event cameras, Visible CMOS cameras and Depth cameras.
arXiv Detail & Related papers (2023-07-25T16:03:47Z) - Event-based Simultaneous Localization and Mapping: A Comprehensive Survey [52.73728442921428]
Review of event-based vSLAM algorithms that exploit the benefits of asynchronous and irregular event streams for localization and mapping tasks.
Paper categorizes event-based vSLAM methods into four main categories: feature-based, direct, motion-compensation, and deep learning methods.
arXiv Detail & Related papers (2023-04-19T16:21:14Z) - Deep Learning for Event-based Vision: A Comprehensive Survey and Benchmarks [55.81577205593956]
Event cameras are bio-inspired sensors that capture the per-pixel intensity changes asynchronously.
Deep learning (DL) has been brought to this emerging field and inspired active research endeavors in mining its potential.
arXiv Detail & Related papers (2023-02-17T14:19:28Z) - A Deep Learning Approach for the Segmentation of Electroencephalography
Data in Eye Tracking Applications [56.458448869572294]
We introduce DETRtime, a novel framework for time-series segmentation of EEG data.
Our end-to-end deep learning-based framework brings advances in Computer Vision to the forefront.
Our model generalizes well in the task of EEG sleep stage segmentation.
arXiv Detail & Related papers (2022-06-17T10:17:24Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.