JTreeformer: Graph-Transformer via Latent-Diffusion Model for Molecular Generation
- URL: http://arxiv.org/abs/2504.20770v1
- Date: Tue, 29 Apr 2025 13:51:07 GMT
- Title: JTreeformer: Graph-Transformer via Latent-Diffusion Model for Molecular Generation
- Authors: Ji Shi, Chengxun Xie, Zhonghao Li, Xinming Zhang, Miao Zhang,
- Abstract summary: This paper focuses on building a graph transformer-based framework for molecular generation, which we call textbfJTreeformer as it transforms graph generation into junction tree generation.<n>It integrates a directed acyclic GCN into a graph-based Transformer to serve as a decoder, which can iteratively synthesize the entire molecule by leveraging information from the partially constructed molecular structure at each step.
- Score: 17.268526939713105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery of new molecules based on the original chemical molecule distributions is of great importance in medicine. The graph transformer, with its advantages of high performance and scalability compared to traditional graph networks, has been widely explored in recent research for applications of graph structures. However, current transformer-based graph decoders struggle to effectively utilize graph information, which limits their capacity to leverage only sequences of nodes rather than the complex topological structures of molecule graphs. This paper focuses on building a graph transformer-based framework for molecular generation, which we call \textbf{JTreeformer} as it transforms graph generation into junction tree generation. It combines GCN parallel with multi-head attention as the encoder. It integrates a directed acyclic GCN into a graph-based Transformer to serve as a decoder, which can iteratively synthesize the entire molecule by leveraging information from the partially constructed molecular structure at each step. In addition, a diffusion model is inserted in the latent space generated by the encoder, to enhance the efficiency and effectiveness of sampling further. The empirical results demonstrate that our novel framework outperforms existing molecule generation methods, thus offering a promising tool to advance drug discovery (https://anonymous.4open.science/r/JTreeformer-C74C).
Related papers
- DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra [60.39311767532607]
DiffMS is a formula-restricted encoder-decoder generative network.
We develop a robust decoder that bridges latent embeddings and molecular structures.
Experiments show DiffMS outperforms existing models on $textitde novo$ molecule generation.
arXiv Detail & Related papers (2025-02-13T18:29:48Z) - GraphXForm: Graph transformer for computer-aided molecular design [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds.<n>We evaluate it on various drug design tasks, demonstrating superior objective scores compared to state-of-the-art molecular design approaches.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - Node-Aligned Graph-to-Graph (NAG2G): Elevating Template-Free Deep Learning Approaches in Single-Step Retrosynthesis [12.713263007109518]
Single-step retrosynthesis (SSR) in organic chemistry is increasingly benefiting from deep learning (DL) techniques in computer-synthesis design.
While template-aided DL models are flexible and promising for retrosynthesis prediction, they often ignore vital 2D molecular information and struggle with atom alignment for node generation.
We introduce Node-Aligned Graph-to-Graph (NAG2G), a transformer-based template-free DL model.
arXiv Detail & Related papers (2023-09-27T17:16:32Z) - RGCVAE: Relational Graph Conditioned Variational Autoencoder for
Molecule Design [70.59828655929194]
Deep Graph Variational Autoencoders are among the most powerful machine learning tools with which it is possible to address this problem.
We propose RGCVAE, an efficient and effective Graph Variational Autoencoder based on: (i) an encoding network exploiting a new powerful Graph Isomorphism Network; (ii) a novel probabilistic decoding component.
arXiv Detail & Related papers (2023-05-19T14:23:48Z) - GraphGANFed: A Federated Generative Framework for Graph-Structured
Molecules Towards Efficient Drug Discovery [2.309914459672556]
We propose a Graph convolutional network in Generative Adversarial Networks via Federated learning (GraphGANFed) framework to generate novel molecules without sharing local data sets.
The molecules generated by GraphGANFed can achieve high novelty (=100) and diversity (> 0.9)
arXiv Detail & Related papers (2023-04-11T21:15:28Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery.
We propose a representation-first approach to molecular graph generation.
We show that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis.
arXiv Detail & Related papers (2021-10-12T18:00:23Z) - Learning Attributed Graph Representations with Communicative Message
Passing Transformer [3.812358821429274]
We propose a Communicative Message Passing Transformer (CoMPT) neural network to improve the molecular graph representation.
Unlike the previous transformer-style GNNs that treat molecules as fully connected graphs, we introduce a message diffusion mechanism to leverage the graph connectivity inductive bias.
arXiv Detail & Related papers (2021-07-19T11:58:32Z) - GraphPiece: Efficiently Generating High-Quality Molecular Graph with
Substructures [7.021635649909492]
We propose a method to automatically discover common substructures, which we call em graph pieces, from given molecular graphs.
Based on graph pieces, we leverage a variational autoencoder to generate molecules in two phases: piece-level graph generation followed by bond completion.
arXiv Detail & Related papers (2021-06-29T05:26:18Z) - A Graph VAE and Graph Transformer Approach to Generating Molecular
Graphs [1.6631602844999724]
We propose a variational autoencoder and a transformer based model which fully utilise graph convolutional and graph pooling layers.
The transformer model implements a novel node encoding layer, replacing the position encoding typically used in transformers, to create a transformer with no position information that operates on graphs.
In experiments we chose a benchmark task of molecular generation, given the importance of both generated node and edge features.
arXiv Detail & Related papers (2021-04-09T13:13:06Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z) - Uncovering the Folding Landscape of RNA Secondary Structure with Deep
Graph Embeddings [71.20283285671461]
We propose a geometric scattering autoencoder (GSAE) network for learning such graph embeddings.
Our embedding network first extracts rich graph features using the recently proposed geometric scattering transform.
We show that GSAE organizes RNA graphs both by structure and energy, accurately reflecting bistable RNA structures.
arXiv Detail & Related papers (2020-06-12T00:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.