Equivariant non-linear maps for neural networks on homogeneous spaces
- URL: http://arxiv.org/abs/2504.20974v1
- Date: Tue, 29 Apr 2025 17:42:56 GMT
- Title: Equivariant non-linear maps for neural networks on homogeneous spaces
- Authors: Elias Nyholm, Oscar Carlsson, Maurice Weiler, Daniel Persson,
- Abstract summary: We present a novel framework for non-linear equivariant neural network layers on homogeneous spaces.<n>We derive generalized steerability constraints that any such layer needs to satisfy.<n>We demonstrate how several common equivariant network architectures may be derived from our framework.
- Score: 8.944149301388551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel framework for non-linear equivariant neural network layers on homogeneous spaces. The seminal work of Cohen et al. on equivariant $G$-CNNs on homogeneous spaces characterized the representation theory of such layers in the linear setting, finding that they are given by convolutions with kernels satisfying so-called steerability constraints. Motivated by the empirical success of non-linear layers, such as self-attention or input dependent kernels, we set out to generalize these insights to the non-linear setting. We derive generalized steerability constraints that any such layer needs to satisfy and prove the universality of our construction. The insights gained into the symmetry-constrained functional dependence of equivariant operators on feature maps and group elements informs the design of future equivariant neural network layers. We demonstrate how several common equivariant network architectures - $G$-CNNs, implicit steerable kernel networks, conventional and relative position embedded attention based transformers, and LieTransformers - may be derived from our framework.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - A Characterization Theorem for Equivariant Networks with Point-wise
Activations [13.00676132572457]
We prove that rotation-equivariant networks can only be invariant, as it happens for any network which is equivariant with respect to connected compact groups.
We show that feature spaces of disentangled steerable convolutional neural networks are trivial representations.
arXiv Detail & Related papers (2024-01-17T14:30:46Z) - Optimization Dynamics of Equivariant and Augmented Neural Networks [2.7918308693131135]
We investigate the optimization of neural networks on symmetric data.
We compare the strategy of constraining the architecture to be equivariant to that of using data augmentation.
Our analysis reveals that even in the latter situation, stationary points may be unstable for augmented training although they are stable for the manifestly equivariant models.
arXiv Detail & Related papers (2023-03-23T17:26:12Z) - Geometrical aspects of lattice gauge equivariant convolutional neural
networks [0.0]
Lattice gauge equivariant convolutional neural networks (L-CNNs) are a framework for convolutional neural networks that can be applied to non-Abelian lattice gauge theories.
arXiv Detail & Related papers (2023-03-20T20:49:08Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Interrelation of equivariant Gaussian processes and convolutional neural
networks [77.34726150561087]
Currently there exists rather promising new trend in machine leaning (ML) based on the relationship between neural networks (NN) and Gaussian processes (GP)
In this work we establish a relationship between the many-channel limit for CNNs equivariant with respect to two-dimensional Euclidean group with vector-valued neuron activations and the corresponding independently introduced equivariant Gaussian processes (GP)
arXiv Detail & Related papers (2022-09-17T17:02:35Z) - Exploring Linear Feature Disentanglement For Neural Networks [63.20827189693117]
Non-linear activation functions, e.g., Sigmoid, ReLU, and Tanh, have achieved great success in neural networks (NNs)
Due to the complex non-linear characteristic of samples, the objective of those activation functions is to project samples from their original feature space to a linear separable feature space.
This phenomenon ignites our interest in exploring whether all features need to be transformed by all non-linear functions in current typical NNs.
arXiv Detail & Related papers (2022-03-22T13:09:17Z) - Generalization capabilities of neural networks in lattice applications [0.0]
We investigate the advantages of adopting translationally equivariant neural networks in favor of non-equivariant ones.
We show that our best equivariant architectures can perform and generalize significantly better than their non-equivariant counterparts.
arXiv Detail & Related papers (2021-12-23T11:48:06Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
We study the generalization of non commutative convolutional neural networks.
We show that non commutative convolutional architectures can be stable to deformations on the space of operators.
arXiv Detail & Related papers (2021-08-23T04:22:58Z) - Lattice gauge equivariant convolutional neural networks [0.0]
We propose Lattice gauge equivariant Convolutional Neural Networks (L-CNNs) for generic machine learning applications.
We show that L-CNNs can learn and generalize gauge invariant quantities that traditional convolutional neural networks are incapable of finding.
arXiv Detail & Related papers (2020-12-23T19:00:01Z) - Stability of Algebraic Neural Networks to Small Perturbations [179.55535781816343]
Algebraic neural networks (AlgNNs) are composed of a cascade of layers each one associated to and algebraic signal model.
We show how any architecture that uses a formal notion of convolution can be stable beyond particular choices of the shift operator.
arXiv Detail & Related papers (2020-10-22T09:10:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.