Data-driven operator learning for energy-efficient building control
- URL: http://arxiv.org/abs/2504.21243v1
- Date: Wed, 30 Apr 2025 00:45:49 GMT
- Title: Data-driven operator learning for energy-efficient building control
- Authors: Yuexin Bian, Yuanyuan Shi,
- Abstract summary: We present a data-driven framework that combines the physical accuracy of CFD with the computational efficiency of machine learning to enable energy-efficient building ventilation control.<n>We train a neural operator transformer to learn the mapping from building control actions to airflow field distributions using high-resolution CFD data.<n> Experimental results demonstrate that our approach achieves substantial energy savings compared to maximum airflow rate control, rule-based control, and data-driven control based on regional average CO2 predictions.
- Score: 2.3326951882644553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy-efficient ventilation control plays a vital role in reducing building energy consumption while ensuring occupant health and comfort. While Computational Fluid Dynamics (CFD) simulations offer high-fidelity modeling of airflow for building HVAC design, their high computational cost makes them impractical for practical adoption in real-time building management system. In this work, we present a data-driven framework that combines the physical accuracy of CFD with the computational efficiency of machine learning to enable energy-efficient building ventilation control. Our method jointly optimizes airflow supply rates and vent angles to reduce energy use and adhere to air quality constraints. We train a neural operator transformer to learn the mapping from building control actions to airflow field distributions using high-resolution CFD data. This learned operator enables a gradient-based control framework capable of optimal decision-making. Experimental results demonstrate that our approach achieves substantial energy savings compared to maximum airflow rate control, rule-based control, and data-driven control based on regional average CO2 predictions, while consistently maintaining safe indoor air quality. These results highlight the practicality and scalability of our method for enabling safe and energy-efficient building management.
Related papers
- Efficient Data-Driven MPC for Demand Response of Commercial Buildings [0.0]
We propose a data-driven and mixed-integer bidding strategy for energy management in small commercial buildings.
We consider rooftop unit heating, air conditioning systems with discrete controls to accurately model the operation of most commercial buildings.
We apply our approach in several demand response (DR) settings, including a time-of-use, and a critical rebate bidding.
arXiv Detail & Related papers (2024-01-28T20:01:44Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Laxity-Aware Scalable Reinforcement Learning for HVAC Control [2.0625936401496237]
We tackle the curse of dimensionality issue in modeling and control by utilizing the concept of laxity to quantify the emergency level of each operation request.
We propose a two-level approach to address energy optimization for a large population of HVAC systems.
arXiv Detail & Related papers (2023-06-29T01:28:14Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency.
We show it is possible to obtain emission-reducing policies without a priori--a paradigm we call zero-shot building control.
arXiv Detail & Related papers (2022-08-12T17:13:25Z) - Machine Learning for Mechanical Ventilation Control (Extended Abstract) [52.65490904484772]
Mechanical ventilation is one of the most widely used therapies in the ICU.
We frame these as a control problem: ventilators must let air in and out of the patient's lungs according to a prescribed trajectory of airway pressure.
Our data-driven approach learns to control an invasive ventilator by training on a simulator itself trained on data collected from the ventilator.
This method outperforms popular reinforcement learning algorithms and even controls the physical ventilator more accurately and robustly than PID.
arXiv Detail & Related papers (2021-11-19T20:54:41Z) - Enforcing Policy Feasibility Constraints through Differentiable
Projection for Energy Optimization [57.88118988775461]
We propose PROjected Feasibility (PROF) to enforce convex operational constraints within neural policies.
We demonstrate PROF on two applications: energy-efficient building operation and inverter control.
arXiv Detail & Related papers (2021-05-19T01:58:10Z) - Development of a Soft Actor Critic Deep Reinforcement Learning Approach
for Harnessing Energy Flexibility in a Large Office Building [0.0]
This research is concerned with the novel application and investigation of Soft Actor Critic' (SAC) based Deep Reinforcement Learning (DRL)
SAC is a model-free DRL technique that is able to handle continuous action spaces.
arXiv Detail & Related papers (2021-04-25T10:33:35Z) - One for Many: Transfer Learning for Building HVAC Control [24.78264822089494]
We present a novel transfer learning based approach to overcome this challenge.
Our approach can effectively transfer a DRL-based HVAC controller trained for the source building to a controller for the target building with minimal effort and improved performance.
arXiv Detail & Related papers (2020-08-09T01:32:37Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.