Multi-level datasets training method in Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2504.21328v1
- Date: Wed, 30 Apr 2025 05:30:27 GMT
- Title: Multi-level datasets training method in Physics-Informed Neural Networks
- Authors: Yao-Hsuan Tsai, Hsiao-Tung Juan, Pao-Hsiung Chiu, Chao-An Lin,
- Abstract summary: PINNs struggle with the challenging problems which are stiff to be solved and/or have high-frequency components in the solutions.<n>In this study, an alternative approach is proposed to mitigate the above-mentioned problems.<n>Inspired by the multi-grid method in CFD community, the underlying idea of the current approach is to efficiently remove different frequency errors via training.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-Informed Neural Networks have emerged as a promising methodology for solving PDEs, gaining significant attention in computer science and various physics-related fields. Despite being demonstrated the ability to incorporate the physics of laws for versatile applications, PINNs still struggle with the challenging problems which are stiff to be solved and/or have high-frequency components in the solutions, resulting in accuracy and convergence issues. It may not only increase computational costs, but also lead to accuracy loss or solution divergence. In this study, an alternative approach is proposed to mitigate the above-mentioned problems. Inspired by the multi-grid method in CFD community, the underlying idea of the current approach is to efficiently remove different frequency errors via training with different levels of training samples, resulting in a simpler way to improve the training accuracy without spending time in fine-tuning of neural network structures, loss weights as well as hyperparameters. To demonstrate the efficacy of current approach, we first investigate canonical 1D ODE with high-frequency component and 2D convection-diffusion equation with V-cycle training strategy. Finally, the current method is employed for the classical benchmark problem of steady Lid-driven cavity flows at different Reynolds numbers, to investigate the applicability and efficacy for the problem involved multiple modes of high and low frequency. By virtue of various training sequence modes, improvement through predictions lead to 30% to 60% accuracy improvement. We also investigate the synergies between current method and transfer learning techniques for more challenging problems (i.e., higher Re). From the present results, it also revealed that the current framework can produce good predictions even for the case of Re=5000, demonstrating the ability to solve complex high-frequency PDEs.
Related papers
- Stiff Transfer Learning for Physics-Informed Neural Networks [1.5361702135159845]
We propose a novel approach, stiff transfer learning for physics-informed neural networks (STL-PINNs) to tackle stiff ordinary differential equations (ODEs) and partial differential equations (PDEs)<n>Our methodology involves training a Multi-Head-PINN in a low-stiff regime, and obtaining the final solution in a high stiff regime by transfer learning.<n>This addresses the failure modes related to stiffness in PINNs while maintaining computational efficiency by computing "one-shot" solutions.
arXiv Detail & Related papers (2025-01-28T20:27:38Z) - Physics-Informed Neural Networks for High-Frequency and Multi-Scale
Problems using Transfer Learning [0.0]
Physics-informed neural network (PINN) is a data-driven solver for partial and ordinary differential equations(ODEs/PDEs)
We propose using transfer learning to boost the robustness and convergence of training PINN.
We elaborately described our training strategy, including selection, and suggested guidelines for using transfer learning to train neural networks for solving more complex problems.
arXiv Detail & Related papers (2024-01-05T13:45:08Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
We propose the attention-inspired numerical solver (AttNS) to solve differential equations due to limited data.<n>AttNS is inspired by the effectiveness of attention modules in Residual Neural Networks (ResNet) in enhancing model generalization and robustness.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
We introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases the number of frequency modes used by the model.
We show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets.
Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.
arXiv Detail & Related papers (2022-11-28T09:57:15Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Training multi-objective/multi-task collocation physics-informed neural
network with student/teachers transfer learnings [0.0]
This paper presents a PINN training framework that employs pre-training steps and a net-to-net knowledge transfer algorithm.
A multi-objective optimization algorithm may improve the performance of a physical-informed neural network with competing constraints.
arXiv Detail & Related papers (2021-07-24T00:43:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.