Synergy-CLIP: Extending CLIP with Multi-modal Integration for Robust Representation Learning
- URL: http://arxiv.org/abs/2504.21375v1
- Date: Wed, 30 Apr 2025 07:14:58 GMT
- Title: Synergy-CLIP: Extending CLIP with Multi-modal Integration for Robust Representation Learning
- Authors: Sangyeon Cho, Jangyeong Jeon, Mingi Kim, Junyeong Kim,
- Abstract summary: We propose Synergy-CLIP, a framework that extends the contrastive language-image pre-training (CLIP) architecture to enhance multi-modal representation learning.<n>Unlike existing methods that focus on adapting individual modalities to vanilla-CLIP, Synergy-CLIP aligns and captures latent information across three modalities equally.<n>We introduce VGG-sound+, a triple-modal dataset designed to provide equal-scale representation of visual, textual, and audio data.
- Score: 2.56061946132533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-modal representation learning has become a pivotal area in artificial intelligence, enabling the integration of diverse modalities such as vision, text, and audio to solve complex problems. However, existing approaches predominantly focus on bimodal interactions, such as image-text pairs, which limits their ability to fully exploit the richness of multi-modal data. Furthermore, the integration of modalities in equal-scale environments remains underexplored due to the challenges of constructing large-scale, balanced datasets. In this study, we propose Synergy-CLIP, a novel framework that extends the contrastive language-image pre-training (CLIP) architecture to enhance multi-modal representation learning by integrating visual, textual, and audio modalities. Unlike existing methods that focus on adapting individual modalities to vanilla-CLIP, Synergy-CLIP aligns and captures latent information across three modalities equally. To address the high cost of constructing large-scale multi-modal datasets, we introduce VGG-sound+, a triple-modal dataset designed to provide equal-scale representation of visual, textual, and audio data. Synergy-CLIP is validated on various downstream tasks, including zero-shot classification, where it outperforms existing baselines. Additionally, we introduce a missing modality reconstruction task, demonstrating Synergy-CLIP's ability to extract synergy among modalities in realistic application scenarios. These contributions provide a robust foundation for advancing multi-modal representation learning and exploring new research directions.
Related papers
- A-MESS: Anchor based Multimodal Embedding with Semantic Synchronization for Multimodal Intent Recognition [3.4568313440884837]
We present the Anchor-based Multimodal Embedding with Semantic Synchronization (A-MESS) framework.<n>We first design an Anchor-based Multimodal Embedding (A-ME) module that employs an anchor-based embedding fusion mechanism to integrate multimodal inputs.<n>We develop a Semantic Synchronization (SS) strategy with the Triplet Contrastive Learning pipeline, which optimize the process by synchronizing multimodal representation with label descriptions.
arXiv Detail & Related papers (2025-03-25T09:09:30Z) - Lyra: An Efficient and Speech-Centric Framework for Omni-Cognition [57.131546757903834]
Lyra is an efficient MLLM that enhances multimodal abilities, including advanced long-speech comprehension, sound understanding, cross-modality efficiency, and seamless speech interaction.
Lyra achieves state-of-the-art performance on various vision-language, vision-speech, and speech-language benchmarks, while also using fewer computational resources and less training data.
arXiv Detail & Related papers (2024-12-12T17:50:39Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
Existing methods rely heavily on modal-specific pretraining and joint-modal tuning, leading to significant computational burdens when expanding to new modalities.
We propose PathWeave, a flexible and scalable framework with modal-Path sWitching and ExpAnsion abilities.
PathWeave performs comparably to state-of-the-art MLLMs while concurrently reducing parameter training burdens by 98.73%.
arXiv Detail & Related papers (2024-10-26T13:19:57Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Learning Multimodal Data Augmentation in Feature Space [65.54623807628536]
LeMDA is an easy-to-use method that automatically learns to jointly augment multimodal data in feature space.
We show that LeMDA can profoundly improve the performance of multimodal deep learning architectures.
arXiv Detail & Related papers (2022-12-29T20:39:36Z) - Multimodal Contrastive Learning via Uni-Modal Coding and Cross-Modal
Prediction for Multimodal Sentiment Analysis [19.07020276666615]
We propose a novel framework named MultiModal Contrastive Learning (MMCL) for multimodal representation to capture intra- and inter-modality dynamics simultaneously.
We also design two contrastive learning tasks, instance- and sentiment-based contrastive learning, to promote the process of prediction and learn more interactive information related to sentiment.
arXiv Detail & Related papers (2022-10-26T08:24:15Z) - i-Code: An Integrative and Composable Multimodal Learning Framework [99.56065789066027]
i-Code is a self-supervised pretraining framework where users may flexibly combine the modalities of vision, speech, and language into unified and general-purpose vector representations.
The entire system is pretrained end-to-end with new objectives including masked modality unit modeling and cross-modality contrastive learning.
Experimental results demonstrate how i-Code can outperform state-of-the-art techniques on five video understanding tasks and the GLUE NLP benchmark, improving by as much as 11%.
arXiv Detail & Related papers (2022-05-03T23:38:50Z) - Knowledge Perceived Multi-modal Pretraining in E-commerce [12.012793707741562]
Current multi-modal pretraining methods for image and text modalities lack robustness in the face of modality-missing and modality-noise.
We propose K3M, which introduces knowledge modality in multi-modal pretraining to correct the noise and supplement the missing of image and text modalities.
arXiv Detail & Related papers (2021-08-20T08:01:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.