Enhanced Semi-Supervised Stamping Process Monitoring with Physically-Informed Feature Extraction
- URL: http://arxiv.org/abs/2504.21389v1
- Date: Wed, 30 Apr 2025 07:42:19 GMT
- Title: Enhanced Semi-Supervised Stamping Process Monitoring with Physically-Informed Feature Extraction
- Authors: Jianyu Zhang, Jianshe Feng, Yizhang Zhu, Fanyu Qi,
- Abstract summary: This study introduces a novel semi-supervised in-process anomaly monitoring framework, utilizing accelerometer signals and physics information, to capture the process anomaly effectively.<n>The proposed framework facilitates the construction of a monitoring model with imbalanced sample distribution, which enables in-process condition monitoring in real-time to prevent batch anomalies.
- Score: 3.0043530290654585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In tackling frequent anomalies in stamping processes, this study introduces a novel semi-supervised in-process anomaly monitoring framework, utilizing accelerometer signals and physics information, to capture the process anomaly effectively. The proposed framework facilitates the construction of a monitoring model with imbalanced sample distribution, which enables in-process condition monitoring in real-time to prevent batch anomalies, which helps to reduce batch defects risk and enhance production yield. Firstly, to effectively capture key features from raw data containing redundant information, a hybrid feature extraction algorithm is proposed to utilize data-driven methods and physical mechanisms simultaneously. Secondly, to address the challenge brought by imbalanced sample distribution, a semi-supervised anomaly detection model is established, which merely employs normal samples to build a golden baseline model, and a novel deviation score is proposed to quantify the anomaly level of each online stamping stroke. The effectiveness of the proposed feature extraction method is validated with various classification algorithms. A real-world in-process dataset from stamping manufacturing workshop is employed to illustrate the superiority of proposed semi-supervised framework with enhance performance for process anomaly monitoring.
Related papers
- Component-aware Unsupervised Logical Anomaly Generation for Industrial Anomaly Detection [31.27483219228598]
Anomaly detection is critical in industrial manufacturing for ensuring product quality and improving efficiency in automated processes.<n>Recent generative models often produce unrealistic anomalies increasing false positives, or require real-world anomaly samples for training.<n>We propose ComGEN, a component-aware and unsupervised framework that addresses the gap in logical anomaly generation.
arXiv Detail & Related papers (2025-02-17T11:54:43Z) - Anomaly Detection via Autoencoder Composite Features and NCE [1.2891210250935148]
Autoencoders (AEs) or generative models are often employed to model the data distribution of normal inputs.
We propose a decoupled training approach for anomaly detection that both an AE and a likelihood model trained with noise contrastive estimation (NCE)
arXiv Detail & Related papers (2025-02-04T01:29:22Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
We propose a self-supervised anomaly detection approach that combines contrastive learning with 2D-Flow.
Compared to mainstream unsupervised approaches, our self-supervised method demonstrates superior detection accuracy, fewer additional model parameters, and faster inference speed.
Our approach showcases new state-of-the-art results, achieving a performance of 99.6% in image-level AUROC on the MVTecAD dataset and 96.8% in image-level AUROC on the BTAD dataset.
arXiv Detail & Related papers (2023-11-12T10:07:03Z) - An optimization method for out-of-distribution anomaly detection models [6.075775003017512]
Frequent false alarms impede the promotion of unsupervised anomaly detection algorithms in industrial applications.
An SVM-based classifier is exploited as a post-processing module to identify false alarms from the anomaly map at the object level.
arXiv Detail & Related papers (2023-02-02T08:29:10Z) - Imbalanced Data Classification via Generative Adversarial Network with
Application to Anomaly Detection in Additive Manufacturing Process [5.225026952905702]
This paper proposes a novel data augmentation method based on a generative adversarial network (GAN) using additive manufacturing process image sensor data.
The diverse and high-quality generated samples provide balanced training data to the classifier.
The effectiveness of the proposed method is validated by both open-source data and real-world case studies in polymer and metal AM processes.
arXiv Detail & Related papers (2022-10-28T16:08:21Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.