Galvatron: An Automatic Distributed System for Efficient Foundation Model Training
- URL: http://arxiv.org/abs/2504.21411v1
- Date: Wed, 30 Apr 2025 08:11:45 GMT
- Title: Galvatron: An Automatic Distributed System for Efficient Foundation Model Training
- Authors: Xinyi Liu, Yujie Wang, Shenhan Zhu, Fangcheng Fu, Qingshuo Liu, Guangming Lin, Bin Cui,
- Abstract summary: Galvatron is a distributed system for efficiently training large-scale Foundation Models.<n>It overcomes the complexities of selecting optimal parallelism strategies by automatically identifying the most efficient hybrid strategy.
- Score: 32.29213329004785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Galvatron is a distributed system for efficiently training large-scale Foundation Models. It overcomes the complexities of selecting optimal parallelism strategies by automatically identifying the most efficient hybrid strategy, incorporating data, tensor, pipeline, sharded data, and sequence parallelism, along with recomputation. The system's architecture includes a profiler for hardware and model analysis, a search engine for strategy optimization using decision trees and dynamic programming, and a runtime for executing these strategies efficiently. Benchmarking on various clusters demonstrates Galvatron's superior throughput compared to existing frameworks. This open-source system offers user-friendly interfaces and comprehensive documentation, making complex distributed training accessible and efficient. The source code of Galvatron is available at https://github.com/PKU-DAIR/Hetu-Galvatron.
Related papers
- Heterogeneous Swarms: Jointly Optimizing Model Roles and Weights for Multi-LLM Systems [102.36545569092777]
We propose Heterogeneous Swarms, an algorithm to design multi-LLM systems by jointly optimizing model roles and weights.
Experiments demonstrate that Heterogeneous Swarms outperforms 15 role- and/or weight-based baselines by 18.5% on average across 12 tasks.
arXiv Detail & Related papers (2025-02-06T21:27:11Z) - Integrated Hardware Architecture and Device Placement Search [7.620610652090732]
Distributed execution of deep learning training involves a dynamic interplay between hardware accelerator architecture and device placement strategy.
This is the first work to explore the co-optimization of determining the optimal architecture and device placement strategy.
Our approach achieves higher throughput on large language models compared to the state-of-the-art TPUv4 and the Spotlight accelerator search framework.
arXiv Detail & Related papers (2024-07-18T04:02:35Z) - Flextron: Many-in-One Flexible Large Language Model [85.93260172698398]
We introduce Flextron, a network architecture and post-training model optimization framework supporting flexible model deployment.
We present a sample-efficient training method and associated routing algorithms for transforming an existing trained LLM into a Flextron model.
We demonstrate superior performance over multiple end-to-end trained variants and other state-of-the-art elastic networks, all with a single pretraining run that consumes a mere 7.63% tokens compared to original pretraining.
arXiv Detail & Related papers (2024-06-11T01:16:10Z) - Improving Automatic Parallel Training via Balanced Memory Workload
Optimization [36.87527680184956]
Transformer models have emerged as the leading approach for achieving state-of-the-art performance across various application domains.
We present Galvatron-BMW, a novel system framework that integrates multiple parallelism prevalent dimensions and automatically identifies the most efficient hybrid parallelism strategy.
Our evaluations on different Transformer models demonstrate the capabilities of Galvatron-BMW in automating distributed training under varying GPU memory constraints.
arXiv Detail & Related papers (2023-07-05T05:28:38Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Auto-Parallelizing Large Models with Rhino: A Systematic Approach on
Production AI Platform [15.606647290942563]
Rhino is a system for accelerating tensor programs with automatic parallelization on AI platform for real production environment.
It transforms a tensor program written for a single device into an equivalent distributed program that is capable of scaling up to thousands of devices with no user configuration.
arXiv Detail & Related papers (2023-02-16T08:19:56Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
Deep learning applications benefit from using large models with billions of parameters.
Training these models is notoriously expensive due to the need for specialized HPC clusters.
We consider alternative setups for training large models: using cheap "preemptible" instances or pooling existing resources from multiple regions.
arXiv Detail & Related papers (2023-01-27T18:55:19Z) - COMET: A Comprehensive Cluster Design Methodology for Distributed Deep Learning Training [42.514897110537596]
Modern Deep Learning (DL) models have grown to sizes requiring massive clusters of specialized, high-end nodes to train.
designing such clusters to maximize both performance and utilization--to amortize their steep cost--is a challenging task.
We introduce COMET, a holistic cluster design methodology and workflow to jointly study the impact of parallelization strategies and key cluster resource provisioning on the performance of distributed DL training.
arXiv Detail & Related papers (2022-11-30T00:32:37Z) - Galvatron: Efficient Transformer Training over Multiple GPUs Using
Automatic Parallelism [25.928940638269534]
We propose Galvatron, a framework that automatically finds the most efficient hybrid parallelism strategy.
Galvatron always achieves superior system throughput compared to previous work with limited parallelism.
arXiv Detail & Related papers (2022-11-25T03:45:31Z) - Tevatron: An Efficient and Flexible Toolkit for Dense Retrieval [60.457378374671656]
Tevatron is a dense retrieval toolkit optimized for efficiency, flexibility, and code simplicity.
We show how Tevatron's flexible design enables easy generalization across datasets, model architectures, and accelerator platforms.
arXiv Detail & Related papers (2022-03-11T05:47:45Z) - DistIR: An Intermediate Representation and Simulator for Efficient
Neural Network Distribution [15.086401550425125]
DistIR is a representation for distributed computation that is tailored for efficient analyses.
We show how DistIR and its simulator enable fast grid searches over complex distribution spaces spanning up to 1000+ configurations.
arXiv Detail & Related papers (2021-11-09T21:32:51Z) - TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale
Language Models [60.23234205219347]
TeraPipe is a high-performance token-level pipeline parallel algorithm for synchronous model-parallel training of Transformer-based language models.
We show that TeraPipe can speed up the training by 5.0x for the largest GPT-3 model with 175 billion parameters on an AWS cluster.
arXiv Detail & Related papers (2021-02-16T07:34:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.