SAM4EM: Efficient memory-based two stage prompt-free segment anything model adapter for complex 3D neuroscience electron microscopy stacks
- URL: http://arxiv.org/abs/2504.21544v1
- Date: Wed, 30 Apr 2025 11:38:02 GMT
- Title: SAM4EM: Efficient memory-based two stage prompt-free segment anything model adapter for complex 3D neuroscience electron microscopy stacks
- Authors: Uzair Shah, Marco Agus, Daniya Boges, Vanessa Chiappini, Mahmood Alzubaidi, Jens Schneider, Markus Hadwiger, Pierre J. Magistretti, Mowafa Househ, Corrado Calı,
- Abstract summary: We present SAM4EM, a novel approach for 3D segmentation of complex neural structures in electron microscopy (EM) data.<n>Our contributions include the development of a prompt-free adapter for SAM using two stage mask decoding.<n>We release a unique benchmark dataset for the segmentation of astrocytic processes and synapses.
- Score: 6.277236040603983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present SAM4EM, a novel approach for 3D segmentation of complex neural structures in electron microscopy (EM) data by leveraging the Segment Anything Model (SAM) alongside advanced fine-tuning strategies. Our contributions include the development of a prompt-free adapter for SAM using two stage mask decoding to automatically generate prompt embeddings, a dual-stage fine-tuning method based on Low-Rank Adaptation (LoRA) for enhancing segmentation with limited annotated data, and a 3D memory attention mechanism to ensure segmentation consistency across 3D stacks. We further release a unique benchmark dataset for the segmentation of astrocytic processes and synapses. We evaluated our method on challenging neuroscience segmentation benchmarks, specifically targeting mitochondria, glia, and synapses, with significant accuracy improvements over state-of-the-art (SOTA) methods, including recent SAM-based adapters developed for the medical domain and other vision transformer-based approaches. Experimental results indicate that our approach outperforms existing solutions in the segmentation of complex processes like glia and post-synaptic densities. Our code and models are available at https://github.com/Uzshah/SAM4EM.
Related papers
- AMA-SAM: Adversarial Multi-Domain Alignment of Segment Anything Model for High-Fidelity Histology Nuclei Segmentation [2.52189149988768]
We introduce Adrial Multi-domain Alignment of Segment Anything Model (AMA-SAM) that extends the Segment Anything Model (SAM) to overcome obstacles through two key innovations.
First, we propose a Conditional Gradient Reversal Layer (CGRL) that harmonizes features from diverse domains to promote domain-invariant representation learning.
Second, we address SAM's inherent low-resolution output by designing a High-Resolution Decoder (HR-Decoder) which directly produces fine-grained segmentation maps.
arXiv Detail & Related papers (2025-03-27T16:59:39Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Novel adaptation of video segmentation to 3D MRI: efficient zero-shot knee segmentation with SAM2 [1.6237741047782823]
We introduce a method for zero-shot, single-prompt segmentation of 3D knee MRI by adapting Segment Anything Model 2.
By treating slices from 3D medical volumes as individual video frames, we leverage SAM2's advanced capabilities to generate motion- and spatially-aware predictions.
We demonstrate that SAM2 can efficiently perform segmentation tasks in a zero-shot manner with no additional training or fine-tuning.
arXiv Detail & Related papers (2024-08-08T21:39:15Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - S^2Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR [50.435592120607815]
Scene graph generation (SGG) of surgical procedures is crucial in enhancing holistically cognitive intelligence in the operating room (OR)
Previous works have primarily relied on multi-stage learning, where the generated semantic scene graphs depend on intermediate processes with pose estimation and object detection.
In this study, we introduce a novel single-stage bi-modal transformer framework for SGG in the OR, termed S2Former-OR.
arXiv Detail & Related papers (2024-02-22T11:40:49Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - 3D Mitochondria Instance Segmentation with Spatio-Temporal Transformers [101.44668514239959]
We propose a hybrid encoder-decoder framework that efficiently computes spatial and temporal attentions in parallel.
We also introduce a semantic clutter-background adversarial loss during training that aids in the region of mitochondria instances from the background.
arXiv Detail & Related papers (2023-03-21T17:58:49Z) - MALUNet: A Multi-Attention and Light-weight UNet for Skin Lesion
Segmentation [13.456935850832565]
We propose a light-weight model to achieve competitive performances for skin lesion segmentation at the lowest cost of parameters and computational complexity.
We combine four modules with our U-shape architecture and obtain a light-weight medical image segmentation model dubbed as MALUNet.
Compared with UNet, our model improves the mIoU and DSC metrics by 2.39% and 1.49%, respectively, with a 44x and 166x reduction in the number of parameters and computational complexity.
arXiv Detail & Related papers (2022-11-03T13:19:22Z) - Brain segmentation based on multi-atlas guided 3D fully convolutional
network ensembles [1.52292571922932]
We propose and validated a multi-atlas guided 3D fully convolutional network (FCN) ensemble model (M-FCN) for segmenting brain regions of interest (ROIs) from structural magnetic resonance images (MRIs)
We trained a 3D FCN model for each ROI using patches of adaptive size and embedded outputs of the convolutional layers in the deconvolutional layers to further capture the local and global context patterns.
Our results suggested that the proposed method had a superior segmentation performance.
arXiv Detail & Related papers (2019-01-05T08:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.