Extension-ranking Semantics for Abstract Argumentation Preprint
- URL: http://arxiv.org/abs/2504.21683v1
- Date: Wed, 30 Apr 2025 14:19:42 GMT
- Title: Extension-ranking Semantics for Abstract Argumentation Preprint
- Authors: Kenneth Skiba, Tjitze Rienstra, Matthias Thimm, Jesse Heyninck, Gabriele Kern-Isberner,
- Abstract summary: We present a generalisation of Dung's extension semantics as extension-ranking semantics.<n>To evaluate the extension-ranking semantics, we introduce a number of principles that a well-behaved extension-ranking semantics should satisfy.
- Score: 24.452744968366105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a general framework for ranking sets of arguments in abstract argumentation based on their plausibility of acceptance. We present a generalisation of Dung's extension semantics as extension-ranking semantics, which induce a preorder over the power set of all arguments, allowing us to state that one set is "closer" to being acceptable than another. To evaluate the extension-ranking semantics, we introduce a number of principles that a well-behaved extension-ranking semantics should satisfy. We consider several simple base relations, each of which models a single central aspect of argumentative reasoning. The combination of these base relations provides us with a family of extension-ranking semantics. We also adapt a number of approaches from the literature for ranking extensions to be usable in the context of extension-ranking semantics, and evaluate their behaviour.
Related papers
- An Extension-Based Argument-Ranking Semantics: Social Rankings in Abstract Argumentation Long Version [10.77710090438138]
We introduce a new family of argument-ranking semantics which can be seen as a refinement of the classification of arguments into skeptically accepted, credulously accepted and rejected.<n>We use so-called social ranking functions which have been developed recently to rank individuals based on their performance in groups.
arXiv Detail & Related papers (2024-12-18T09:08:46Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
We propose a method for unsupervised abstractive opinion summarization that combines the attributability and scalability of extractive approaches with the coherence and fluency of Large Language Models (LLMs)
Our method, HIRO, learns an index structure that maps sentences to a path through a semantically organized discrete hierarchy.
At inference time, we populate the index and use it to identify and retrieve clusters of sentences containing popular opinions from input reviews.
arXiv Detail & Related papers (2024-03-01T10:38:07Z) - Ranking-based Argumentation Semantics Applied to Logical Argumentation
(full version) [2.9005223064604078]
We investigate the behaviour of ranking-based semantics for structured argumentation.
We show that a wide class of ranking-based semantics gives rise to so-called culpability measures.
arXiv Detail & Related papers (2023-07-31T15:44:33Z) - HyperMiner: Topic Taxonomy Mining with Hyperbolic Embedding [54.52651110749165]
We present a novel framework that introduces hyperbolic embeddings to represent words and topics.
With the tree-likeness property of hyperbolic space, the underlying semantic hierarchy can be better exploited to mine more interpretable topics.
arXiv Detail & Related papers (2022-10-16T02:54:17Z) - Admissibility in Strength-based Argumentation: Complexity and Algorithms
(Extended Version with Proofs) [1.5828697880068698]
We study the adaptation of admissibility-based semantics to Strength-based Argumentation Frameworks (StrAFs)
Especially, we show that the strong admissibility defined in the literature does not satisfy a desirable property, namely Dung's fundamental lemma.
We propose a translation in pseudo-Boolean constraints for computing (strong and weak) extensions.
arXiv Detail & Related papers (2022-07-05T18:42:04Z) - Rationale-Augmented Ensembles in Language Models [53.45015291520658]
We reconsider rationale-augmented prompting for few-shot in-context learning.
We identify rationale sampling in the output space as the key component to robustly improve performance.
We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches.
arXiv Detail & Related papers (2022-07-02T06:20:57Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
We present an approach for representing abstract argumentation frameworks based on an encoding into classical higher-order logic.
This provides a uniform framework for computer-assisted assessment of abstract argumentation frameworks using interactive and automated reasoning tools.
arXiv Detail & Related papers (2021-10-18T10:45:59Z) - Learning Algebraic Recombination for Compositional Generalization [71.78771157219428]
We propose LeAR, an end-to-end neural model to learn algebraic recombination for compositional generalization.
Key insight is to model the semantic parsing task as a homomorphism between a latent syntactic algebra and a semantic algebra.
Experiments on two realistic and comprehensive compositional generalization demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-07-14T07:23:46Z) - Relational Argumentation Semantics [10.165529175855712]
We show that many existing semantics such as explanation semantics, multi-agent semantics, and more typical semantics, are understood in the relational perspective.
This is a direction to understand argumentation semantics through a common formal language.
arXiv Detail & Related papers (2021-04-26T07:58:17Z) - On graded semantics of abstract argumentation: Extension-based case [0.0]
This paper considers some issues on extension-based semantics for abstract argumentation framework (AAF)
An alternative fundamental lemma is given, which generalizes the corresponding result obtained in [1].
A number of fundamental semantics for AAF, including conflict-free, admissible, complete and stable semantics, are shown to be closed under reduced meet modulo an ultrafilter.
arXiv Detail & Related papers (2020-12-19T04:32:19Z) - High-order Semantic Role Labeling [86.29371274587146]
This paper introduces a high-order graph structure for the neural semantic role labeling model.
It enables the model to explicitly consider not only the isolated predicate-argument pairs but also the interaction between the predicate-argument pairs.
Experimental results on 7 languages of the CoNLL-2009 benchmark show that the high-order structural learning techniques are beneficial to the strong performing SRL models.
arXiv Detail & Related papers (2020-10-09T15:33:54Z) - Hierarchical Human Parsing with Typed Part-Relation Reasoning [179.64978033077222]
How to model human structures is the central theme in this task.
We seek to simultaneously exploit the representational capacity of deep graph networks and the hierarchical human structures.
arXiv Detail & Related papers (2020-03-10T16:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.