Landau-Zener-Stückelberg spectroscopy of a fluxonium quantum circuit
- URL: http://arxiv.org/abs/2504.21691v1
- Date: Wed, 30 Apr 2025 14:28:03 GMT
- Title: Landau-Zener-Stückelberg spectroscopy of a fluxonium quantum circuit
- Authors: Valentín Reparaz, María José Sánchez, Maximiliano Gatto, Daniel Dominguez, Leandro Tosi,
- Abstract summary: We study the time-averaged populations obtained for a fluxonium circuit under a large amplitude nonresonant periodic drive.<n>We present numerical simulations of the time evolution which consider the multi-level structure of the driven quantum circuit.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this work, we study the time-averaged populations obtained for a fluxonium circuit under a large amplitude nonresonant periodic drive. We present numerical simulations of the time evolution which consider the multi-level structure of the driven quantum circuit, looking for a realistic modeling closer to experimental implementations. The Landau-Zener-St\"uckelberg spectra show resonances that can be understood as originated from constructive interference favoring transitions to higher levels. For a truncated two-level system (TLS) the resonance patterns can be interpreted using a simplified description of the avoided crossing that takes into account the dynamic phase accumulated at each operation point. For the multilevel case, we derive an effective two-level Hamiltonian using a Schrieffer-Wolff transformation starting from the Floquet Hamiltonian in the Sambe space. Our study provides predictive insight into experimental outcomes, offering an intuitive interpretation that could also support the implementation of fast-non-adiabatic single-qubit gates and entangling protocols.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Single vibronic level fluorescence spectra from Hagedorn wavepacket dynamics [0.0]
We develop an efficient algorithm to compute the overlaps between two Hagedorn wavepackets.<n>We study the effects of displacement, distortion (squeezing), and Duschinsky rotation on SVL spectra.
arXiv Detail & Related papers (2024-03-01T14:58:07Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Effective Hamiltonian approach to the quantum phase transitions in the extended Jaynes-Cummings model [0.0]
A complex discretization approximation for the environment is proposed to study the quantum phase transition in the extended Jaynes-Cumming model.
It is found that the ground state of this effective Hamiltonian determines the spin dynamics in the single-excitation subspace.
arXiv Detail & Related papers (2023-07-25T14:11:35Z) - Quantum tunneling and level crossings in the squeeze-driven Kerr
oscillator [0.0]
We analyze the spectrum and the dynamics of the effective model up to high energies.
We argue that the level crossings and their consequences to the dynamics are typical to any quantum system with one degree of freedom.
arXiv Detail & Related papers (2023-05-17T18:00:05Z) - Two-level approximation of transmons in quantum quench experiments [9.814009915583153]
We numerically investigate the accuracy and validity of the two-level approximation for the multilevel transmons based on the concept of Loschmidt echo.
We present the results for different system Hamiltonians with various initial states, qubit coupling strength, and external driving, and for two kinds of quantum quench experiments with time reversal and time evolution in one direction.
arXiv Detail & Related papers (2023-02-10T10:53:02Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.