3D Stylization via Large Reconstruction Model
- URL: http://arxiv.org/abs/2504.21836v1
- Date: Wed, 30 Apr 2025 17:46:32 GMT
- Title: 3D Stylization via Large Reconstruction Model
- Authors: Ipek Oztas, Duygu Ceylan, Aysegul Dundar,
- Abstract summary: We draw inspiration from the success of 2D stylization methods that leverage the attention mechanisms in large image generation models to capture and transfer visual style.<n>By injecting features from a visual style image to such blocks, we develop a simple yet effective 3D appearance stylization method.
- Score: 16.51306577413244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing success of text or image guided 3D generators, users demand more control over the generation process, appearance stylization being one of them. Given a reference image, this requires adapting the appearance of a generated 3D asset to reflect the visual style of the reference while maintaining visual consistency from multiple viewpoints. To tackle this problem, we draw inspiration from the success of 2D stylization methods that leverage the attention mechanisms in large image generation models to capture and transfer visual style. In particular, we probe if large reconstruction models, commonly used in the context of 3D generation, has a similar capability. We discover that the certain attention blocks in these models capture the appearance specific features. By injecting features from a visual style image to such blocks, we develop a simple yet effective 3D appearance stylization method. Our method does not require training or test time optimization. Through both quantitative and qualitative evaluations, we demonstrate that our approach achieves superior results in terms of 3D appearance stylization, significantly improving efficiency while maintaining high-quality visual outcomes.
Related papers
- Style3D: Attention-guided Multi-view Style Transfer for 3D Object Generation [9.212876623996475]
Style3D is a novel approach for generating stylized 3D objects from a content image and a style image.<n>By establishing an interplay between structural and stylistic features across multiple views, our approach enables a holistic 3D stylization process.
arXiv Detail & Related papers (2024-12-04T18:59:38Z) - Magic-Boost: Boost 3D Generation with Multi-View Conditioned Diffusion [101.15628083270224]
We propose a novel multi-view conditioned diffusion model to synthesize high-fidelity novel view images.<n>We then introduce a novel iterative-update strategy to adopt it to provide precise guidance to refine the coarse generated results.<n>Experiments show Magic-Boost greatly enhances the coarse generated inputs, generates high-quality 3D assets with rich geometric and textural details.
arXiv Detail & Related papers (2024-04-09T16:20:03Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
We propose a generative refinement network to synthesize new contents with higher quality by exploiting the natural image prior to 2D diffusion model and the global 3D information of the current scene.
Our approach supports wide variety of scene generation and arbitrary camera trajectories with improved visual quality and 3D consistency.
arXiv Detail & Related papers (2024-03-14T14:31:22Z) - Gaussian Splatting in Style [32.41970914897462]
3D sceneization extends the work of neural style transfer to 3D.
A vital challenge in this problem is to maintain the uniformity of the stylized appearance across multiple views.
We propose a novel architecture trained on a collection of style images that, at test time, produces real time high-quality stylized novel views.
arXiv Detail & Related papers (2024-03-13T13:06:31Z) - ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models [65.22994156658918]
We present a method that learns to generate multi-view images in a single denoising process from real-world data.
We design an autoregressive generation that renders more 3D-consistent images at any viewpoint.
arXiv Detail & Related papers (2024-03-04T07:57:05Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - HyperStyle3D: Text-Guided 3D Portrait Stylization via Hypernetworks [101.36230756743106]
This paper is inspired by the success of 3D-aware GANs that bridge 2D and 3D domains with 3D fields as the intermediate representation for rendering 2D images.
We propose a novel method, dubbed HyperStyle3D, based on 3D-aware GANs for 3D portrait stylization.
arXiv Detail & Related papers (2023-04-19T07:22:05Z) - 3DStyleNet: Creating 3D Shapes with Geometric and Texture Style
Variations [81.45521258652734]
We propose a method to create plausible geometric and texture style variations of 3D objects.
Our method can create many novel stylized shapes, resulting in effortless 3D content creation and style-ware data augmentation.
arXiv Detail & Related papers (2021-08-30T02:28:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.