Emotional Analysis of Fashion Trends Using Social Media and AI: Sentiment Analysis on Twitter for Fashion Trend Forecasting
- URL: http://arxiv.org/abs/2505.00050v1
- Date: Wed, 30 Apr 2025 07:27:06 GMT
- Title: Emotional Analysis of Fashion Trends Using Social Media and AI: Sentiment Analysis on Twitter for Fashion Trend Forecasting
- Authors: Aayam Bansal, Agneya Tharun,
- Abstract summary: We examine how sentiment patterns in fashion-related social media conversations can serve as predictors for emerging fashion trends.<n>Results indicate correlations between sentiment patterns and fashion theme popularity, with accessories and streetwear themes showing statistically significant rising trends.<n>Our improved predictive model achieved 78.35% balanced accuracy in sentiment classification, establishing a reliable foundation for trend prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the intersection of fashion trends and social media sentiment through computational analysis of Twitter data using the T4SA (Twitter for Sentiment Analysis) dataset. By applying natural language processing and machine learning techniques, we examine how sentiment patterns in fashion-related social media conversations can serve as predictors for emerging fashion trends. Our analysis involves the identification and categorization of fashion-related content, sentiment classification with improved normalization techniques, time series decomposition, statistically validated causal relationship modeling, cross-platform sentiment comparison, and brand-specific sentiment analysis. Results indicate correlations between sentiment patterns and fashion theme popularity, with accessories and streetwear themes showing statistically significant rising trends. The Granger causality analysis establishes sustainability and streetwear as primary trend drivers, showing bidirectional relationships with several other themes. The findings demonstrate that social media sentiment analysis can serve as an effective early indicator of fashion trend trajectories when proper statistical validation is applied. Our improved predictive model achieved 78.35% balanced accuracy in sentiment classification, establishing a reliable foundation for trend prediction across positive, neutral, and negative sentiment categories.
Related papers
- SynGraph: A Dynamic Graph-LLM Synthesis Framework for Sparse Streaming User Sentiment Modeling [33.73286491864817]
User reviews on e-commerce platforms exhibit dynamic sentiment patterns driven by temporal and contextual factors.<n>Traditional sentiment analysis methods fail to capture the evolving temporal relationship between user sentiment rating and textual content.<n>We introduce SynGraph, a novel framework designed to address data sparsity in sentiment analysis on streaming reviews.
arXiv Detail & Related papers (2025-03-06T17:05:33Z) - Cross-Domain Shopping and Stock Trend Analysis [0.0]
This paper presents a cross-domain trend analysis that aims to identify and analyze the relationships between stock prices, stock news on Twitter, and users' behaviors on e-commerce websites.
The analysis is based on three datasets: a US stock dataset, a stock tweets dataset, and an e-commerce behavior dataset.
arXiv Detail & Related papers (2022-12-23T18:21:28Z) - Sentiment Analysis of Fashion Related Posts in Social Media [36.623221002330226]
We propose a novel framework that jointly leverages the image vision, post text, as well as fashion attribute modality to determine the sentiment category.
Since there is no existing dataset suitable for this task, we prepare a large-scale sentiment analysis dataset of over 12k fashion related social media posts.
arXiv Detail & Related papers (2021-11-15T14:58:09Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - Leveraging Multiple Relations for Fashion Trend Forecasting Based on
Social Media [72.06420633156479]
We propose an improved model named Relation Enhanced Attention Recurrent (REAR) network.
Compared to KERN, the REAR model leverages not only the relations among fashion elements but also those among user groups.
To further improve the performance of long-range trend forecasting, the REAR method devises a sliding temporal attention mechanism.
arXiv Detail & Related papers (2021-05-07T14:52:03Z) - Modeling Fashion Influence from Photos [108.58097776743331]
We explore fashion influence along two channels: geolocation and fashion brands.
We leverage public large-scale datasets of 7.7M Instagram photos from 44 major world cities.
Our results indicate the advantage of grounding visual style evolution both spatially and temporally.
arXiv Detail & Related papers (2020-11-17T20:24:03Z) - Content-based Analysis of the Cultural Differences between TikTok and
Douyin [95.32409577885645]
Short-form video social media shifts away from the traditional media paradigm by telling the audience a dynamic story to attract their attention.
In particular, different combinations of everyday objects can be employed to represent a unique scene that is both interesting and understandable.
Offered by the same company, TikTok and Douyin are popular examples of such new media that has become popular in recent years.
The hypothesis that they express cultural differences together with media fashion and social idiosyncrasy is the primary target of our research.
arXiv Detail & Related papers (2020-11-03T01:47:49Z) - Personalized Fashion Recommendation from Personal Social Media Data: An
Item-to-Set Metric Learning Approach [71.63618051547144]
We study the problem of personalized fashion recommendation from social media data.
We present an item-to-set metric learning framework that learns to compute the similarity between a set of historical fashion items of a user to a new fashion item.
To validate the effectiveness of our approach, we collect a real-world social media dataset.
arXiv Detail & Related papers (2020-05-25T23:24:24Z) - Knowledge Enhanced Neural Fashion Trend Forecasting [81.2083786318119]
This work focuses on investigating fine-grained fashion element trends for specific user groups.
We first contribute a large-scale fashion trend dataset (FIT) collected from Instagram with extracted time series fashion element records and user information.
We propose a Knowledge EnhancedRecurrent Network model (KERN) which takes advantage of the capability of deep recurrent neural networks in modeling time-series data.
arXiv Detail & Related papers (2020-05-07T07:42:17Z) - Using Artificial Intelligence to Analyze Fashion Trends [0.76146285961466]
This study proposes a data-driven quantitative abstracting approach using an artificial intelligence (A.I.) algorithm.
An A.I. model was trained on fashion images from a large-scale dataset under different scenarios.
It was found that the A.I. model can generate rich descriptions of detected regions and accurately bind the garments in the images.
arXiv Detail & Related papers (2020-05-03T04:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.