IP-CRR: Information Pursuit for Interpretable Classification of Chest Radiology Reports
- URL: http://arxiv.org/abs/2505.00191v1
- Date: Wed, 30 Apr 2025 21:20:05 GMT
- Title: IP-CRR: Information Pursuit for Interpretable Classification of Chest Radiology Reports
- Authors: Yuyan Ge, Kwan Ho Ryan Chan, Pablo Messina, René Vidal,
- Abstract summary: We propose an interpretable-by-design framework for classifying radiology reports.<n>The key idea is to extract a set of most informative queries from a large set of reports and use these queries and their corresponding answers to predict a diagnosis.<n>Experiments on the MIMIC-CXR dataset demonstrate the effectiveness of the proposed method.
- Score: 31.359504909372884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of AI-based methods for analyzing radiology reports could lead to significant advances in medical diagnosis--from improving diagnostic accuracy to enhancing efficiency and reducing workload. However, the lack of interpretability in these methods has hindered their adoption in clinical settings. In this paper, we propose an interpretable-by-design framework for classifying radiology reports. The key idea is to extract a set of most informative queries from a large set of reports and use these queries and their corresponding answers to predict a diagnosis. Thus, the explanation for a prediction is, by construction, the set of selected queries and answers. We use the Information Pursuit framework to select informative queries, the Flan-T5 model to determine if facts are present in the report, and a classifier to predict the disease. Experiments on the MIMIC-CXR dataset demonstrate the effectiveness of the proposed method, highlighting its potential to enhance trust and usability in medical AI.
Related papers
- Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.<n>We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.<n>We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - FIND: Fine-grained Information Density Guided Adaptive Retrieval-Augmented Generation for Disease Diagnosis [13.806201934732321]
FIND (textbfFine-grained textbfInformation textbfDensity Guided Adaptive RAG) is a novel framework that improves the reliability of RAG in disease diagnosis scenarios.
arXiv Detail & Related papers (2025-02-20T14:52:36Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.<n>Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Xplainer: From X-Ray Observations to Explainable Zero-Shot Diagnosis [36.45569352490318]
We introduce Xplainer, a framework for explainable zero-shot diagnosis in the clinical setting.
Xplainer adapts the classification-by-description approach of contrastive vision-language models to the multi-label medical diagnosis task.
Our results suggest that Xplainer provides a more detailed understanding of the decision-making process.
arXiv Detail & Related papers (2023-03-23T16:07:31Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Query-Focused EHR Summarization to Aid Imaging Diagnosis [22.21438906817433]
We propose and evaluate models that extract relevant text snippets from patient records to provide a rough case summary.
We use groups of International Classification of Diseases (ICD) codes observed in 'future' records as noisy proxies for 'downstream' diagnoses.
We train (via distant supervision) and evaluate variants of this model on EHR data from Brigham and Women's Hospital in Boston and MIMIC-III.
arXiv Detail & Related papers (2020-04-09T16:32:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.