Weighted-Scenario Optimisation for the Chance Constrained Travelling Thief Problem
- URL: http://arxiv.org/abs/2505.00269v1
- Date: Thu, 01 May 2025 03:30:21 GMT
- Title: Weighted-Scenario Optimisation for the Chance Constrained Travelling Thief Problem
- Authors: Thilina Pathirage Don, Aneta Neumann, Frank Neumann,
- Abstract summary: The chance constrained travelling thief problem (TTP) has been introduced as a variation of the classical travelling thief problem (TTP)<n>In this work, we characterise the chance constrained TTP using a limited number of weighted scenarios.<n>We incorporate a set of evolutionary algorithms and procedures developed for the classical TTP, and formulate that adaptations apply to the weighted scenario-based representation of the problem.
- Score: 10.506038775815094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The chance constrained travelling thief problem (chance constrained TTP) has been introduced as a stochastic variation of the classical travelling thief problem (TTP) in an attempt to embody the effect of uncertainty in the problem definition. In this work, we characterise the chance constrained TTP using a limited number of weighted scenarios. Each scenario represents a similar TTP instance, differing slightly in the weight profile of the items and associated with a certain probability of occurrence. Collectively, the weighted scenarios represent a relaxed form of a stochastic TTP instance where the objective is to maximise the expected benefit while satisfying the knapsack constraint with a larger probability. We incorporate a set of evolutionary algorithms and heuristic procedures developed for the classical TTP, and formulate adaptations that apply to the weighted scenario-based representation of the problem. The analysis focuses on the performance of the algorithms on different settings and examines the impact of uncertainty on the quality of the solutions.
Related papers
- Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Optimizing Chance-Constrained Submodular Problems with Variable
Uncertainties [12.095075636344536]
We study chance-constrained submodular optimization problems, which capture a wide range of problems with constraints.
We present greedy algorithms that can obtain a high-quality solution, i.e., a constant approximation ratio to the given optimal solution.
arXiv Detail & Related papers (2023-09-23T04:48:49Z) - Margin theory for the scenario-based approach to robust optimization in
high dimension [0.0]
This paper deals with the scenario approach to robust optimization.
This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in a problem.
arXiv Detail & Related papers (2023-03-07T13:33:46Z) - Dual Formulation for Chance Constrained Stochastic Shortest Path with
Application to Autonomous Vehicle Behavior Planning [3.655021726150368]
The Constrained Shortest Path problem (C-SSP) is a formalism for planning in environments under certain types of operating constraints.
This work's first contribution is an exact integer linear formulation for Chance-constrained policies.
Third, we show that the CC-SSP formalism can be generalized to account for constraints that span through multiple time steps.
arXiv Detail & Related papers (2023-02-25T16:40:00Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables [11.310502327308575]
We study the scenario of components that are independent and normally distributed.
We introduce a multi-objective formulation of the problem which trades off the expected cost and its variance.
We prove that this approach can also be used to compute a set of optimal solutions for the chance constrained minimum spanning tree problem.
arXiv Detail & Related papers (2021-09-13T09:24:23Z) - A Unifying Theory of Thompson Sampling for Continuous Risk-Averse
Bandits [91.3755431537592]
This paper unifies the analysis of risk-averse Thompson sampling algorithms for the multi-armed bandit problem.
Using the contraction principle in the theory of large deviations, we prove novel concentration bounds for continuous risk functionals.
We show that a wide class of risk functionals as well as "nice" functions of them satisfy the continuity condition.
arXiv Detail & Related papers (2021-08-25T17:09:01Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
A default assumption in many machine learning scenarios is that the training and test samples are drawn from the same probability distribution.
We propose a novel one-step approach that jointly learns the predictive model and the associated weights in one optimization.
arXiv Detail & Related papers (2020-07-08T11:35:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.