Rule-based Classifier Models
- URL: http://arxiv.org/abs/2505.00474v1
- Date: Thu, 01 May 2025 11:59:16 GMT
- Title: Rule-based Classifier Models
- Authors: Cecilia Di Florio, Huimin Dong, Antonino Rotolo,
- Abstract summary: This paper presents an initial approach to incorporating sets of rules within a classifier.<n>We demonstrate how decisions for new cases can be inferred using this enriched rule-based framework.
- Score: 0.4915744683251149
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We extend the formal framework of classifier models used in the legal domain. While the existing classifier framework characterises cases solely through the facts involved, legal reasoning fundamentally relies on both facts and rules, particularly the ratio decidendi. This paper presents an initial approach to incorporating sets of rules within a classifier. Our work is built on the work of Canavotto et al. (2023), which has developed the rule-based reason model of precedential constraint within a hierarchy of factors. We demonstrate how decisions for new cases can be inferred using this enriched rule-based classifier framework. Additionally, we provide an example of how the time element and the hierarchy of courts can be used in the new classifier framework.
Related papers
- Compact Rule-Based Classifier Learning via Gradient Descent [0.7874708385247353]
Rule-based models play a crucial role in scenarios that require transparency and accountable decision-making.<n>We introduce a new rule-based classifier trained using gradient descent, in which the user can control the maximum number and length of the rules.<n>For numerical partitions, the user can also control the partitions used with fuzzy sets, which also helps keep the number of partitions small.
arXiv Detail & Related papers (2025-02-03T14:13:39Z) - When Precedents Clash [0.4915744683251149]
In legal practice the consistency requirements for case bases may not be satisfied.
A model of precedential constraint should take into account the hierarchical structure of the legal system under consideration.
We show that condition principles based on the hierarchical structure and on the temporal dimension can provide an unambiguous decision-making process for new cases.
arXiv Detail & Related papers (2024-10-14T14:45:47Z) - Probabilistic Truly Unordered Rule Sets [4.169915659794567]
We propose TURS, for Truly Unordered Rule Sets.
We exploit the probabilistic properties of our rule sets, with the intuition of only allowing rules to overlap if they have similar probabilistic outputs.
We benchmark against a wide range of rule-based methods and demonstrate that our method learns rule sets that have lower model complexity and highly competitive predictive performance.
arXiv Detail & Related papers (2024-01-18T12:03:19Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - Mitigating Catastrophic Forgetting in Task-Incremental Continual
Learning with Adaptive Classification Criterion [50.03041373044267]
We propose a Supervised Contrastive learning framework with adaptive classification criterion for Continual Learning.
Experiments show that CFL achieves state-of-the-art performance and has a stronger ability to overcome compared with the classification baselines.
arXiv Detail & Related papers (2023-05-20T19:22:40Z) - Modelling and Explaining Legal Case-based Reasoners through Classifiers [9.052343834206992]
This paper brings together two lines of research: factor-based models of case-based reasoning (CBR) and the logical specification of classifiers.
arXiv Detail & Related papers (2022-10-20T12:51:12Z) - fairlib: A Unified Framework for Assessing and Improving Classification
Fairness [66.27822109651757]
fairlib is an open-source framework for assessing and improving classification fairness.
We implement 14 debiasing methods, including pre-processing, at-training-time, and post-processing approaches.
The built-in metrics cover the most commonly used fairness criterion and can be further generalized and customized for fairness evaluation.
arXiv Detail & Related papers (2022-05-04T03:50:23Z) - Fair Decision Rules for Binary Classification [0.0]
We consider the problem of building Boolean rule sets in disjunctive normal form (DNF)
We formulate the problem as an integer program that maximizes classification accuracy with explicit constraints on two different measures of classification parity.
Compared to other fair and interpretable classifiers, our method is able to find rule sets that meet stricter notions of fairness with a modest trade-off in accuracy.
arXiv Detail & Related papers (2021-07-03T02:32:17Z) - Hierarchical Modeling for Out-of-Scope Domain and Intent Classification [55.23920796595698]
This paper focuses on out-of-scope intent classification in dialog systems.
We propose a hierarchical multi-task learning approach based on a joint model to classify domain and intent simultaneously.
Experiments show that the model outperforms existing methods in terms of accuracy, out-of-scope recall and F1.
arXiv Detail & Related papers (2021-04-30T06:38:23Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z) - Rewriting a Deep Generative Model [56.91974064348137]
We introduce a new problem setting: manipulation of specific rules encoded by a deep generative model.
We propose a formulation in which the desired rule is changed by manipulating a layer of a deep network as a linear associative memory.
We present a user interface to enable users to interactively change the rules of a generative model to achieve desired effects.
arXiv Detail & Related papers (2020-07-30T17:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.