Bayes-Optimal Fair Classification with Multiple Sensitive Features
- URL: http://arxiv.org/abs/2505.00631v1
- Date: Thu, 01 May 2025 16:12:12 GMT
- Title: Bayes-Optimal Fair Classification with Multiple Sensitive Features
- Authors: Yi Yang, Yinghui Huang, Xiangyu Chang,
- Abstract summary: We characterize the Bayes-optimal fair classifier for multiple sensitive features under general approximate fairness measures.<n>We show that these approximate measures for existing group fairness notions, including Demographic Parity, are linear transformations of selection rates for specific groups.<n>Our framework applies to both attribute-aware and attribute-blind settings and can accommodate composite fairness notions like Equalized Odds.
- Score: 24.42403136889636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing theoretical work on Bayes-optimal fair classifiers usually considers a single (binary) sensitive feature. In practice, individuals are often defined by multiple sensitive features. In this paper, we characterize the Bayes-optimal fair classifier for multiple sensitive features under general approximate fairness measures, including mean difference and mean ratio. We show that these approximate measures for existing group fairness notions, including Demographic Parity, Equal Opportunity, Predictive Equality, and Accuracy Parity, are linear transformations of selection rates for specific groups defined by both labels and sensitive features. We then characterize that Bayes-optimal fair classifiers for multiple sensitive features become instance-dependent thresholding rules that rely on a weighted sum of these group membership probabilities. Our framework applies to both attribute-aware and attribute-blind settings and can accommodate composite fairness notions like Equalized Odds. Building on this, we propose two practical algorithms for Bayes-optimal fair classification via in-processing and post-processing. We show empirically that our methods compare favorably to existing methods.
Related papers
- Bayes-Optimal Fair Classification with Linear Disparity Constraints via
Pre-, In-, and Post-processing [32.5214395114507]
We develop methods for Bayes-optimal fair classification, aiming to minimize classification error subject to given group fairness constraints.
We show that several popular disparity measures -- the deviations from demographic parity, equality of opportunity, and predictive equality -- are bilinear.
Our methods control disparity directly while achieving near-optimal fairness-accuracy tradeoffs.
arXiv Detail & Related papers (2024-02-05T08:59:47Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences.
We introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces.
We empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
arXiv Detail & Related papers (2022-11-11T11:28:46Z) - Fairness via Adversarial Attribute Neighbourhood Robust Learning [49.93775302674591]
We propose a principled underlineRobust underlineAdversarial underlineAttribute underlineNeighbourhood (RAAN) loss to debias the classification head.
arXiv Detail & Related papers (2022-10-12T23:39:28Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Fair Tree Learning [0.15229257192293202]
Various optimisation criteria combine classification performance with a fairness metric.
Current fair decision tree methods only optimise for a fixed threshold on both the classification task as well as the fairness metric.
We propose a threshold-independent fairness metric termed uniform demographic parity, and a derived splitting criterion entitled SCAFF -- Splitting Criterion AUC for Fairness.
arXiv Detail & Related papers (2021-10-18T13:40:25Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Addressing Fairness in Classification with a Model-Agnostic
Multi-Objective Algorithm [33.145522561104464]
The goal of fairness in classification is to learn a classifier that does not discriminate against groups of individuals based on sensitive attributes, such as race and gender.
One approach to designing fair algorithms is to use relaxations of fairness notions as regularization terms.
We leverage this property to define a differentiable relaxation that approximates fairness notions provably better than existing relaxations.
arXiv Detail & Related papers (2020-09-09T17:40:24Z) - Fairness with Overlapping Groups [15.154984899546333]
A standard goal is to ensure the equality of fairness metrics across multiple overlapping groups simultaneously.
We reconsider this standard fair classification problem using a probabilistic population analysis.
Our approach unifies a variety of existing group-fair classification methods and enables extensions to a wide range of non-decomposable multiclass performance metrics and fairness measures.
arXiv Detail & Related papers (2020-06-24T05:01:10Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - FACT: A Diagnostic for Group Fairness Trade-offs [23.358566041117083]
Group fairness is a class of fairness notions that measure how different groups of individuals are treated differently according to their protected attributes.
We propose a general diagnostic that enables systematic characterization of these trade-offs in group fairness.
arXiv Detail & Related papers (2020-04-07T14:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.