ICQuant: Index Coding enables Low-bit LLM Quantization
- URL: http://arxiv.org/abs/2505.00850v1
- Date: Thu, 01 May 2025 20:23:29 GMT
- Title: ICQuant: Index Coding enables Low-bit LLM Quantization
- Authors: Xinlin Li, Osama Hanna, Christina Fragouli, Suhas Diggavi,
- Abstract summary: A key challenge in weight quantization is the presence of outliers, which inflate quantization ranges and lead to large errors.<n>We present ICQuant, a novel framework that leverages outlier statistics to design an efficient index coding scheme for outlier-aware quantization.<n>Using just 2.3 bits per weight and simple scalar quantizers, ICQuant improves the zero-shot accuracy of the 2-bit Llama3-70B model by up to 130% and 150% relative to QTIP and QuIP#.
- Score: 11.57957118744944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid deployment of Large Language Models (LLMs) highlights the need for efficient low-bit post-training quantization (PTQ), due to their high memory costs. A key challenge in weight quantization is the presence of outliers, which inflate quantization ranges and lead to large errors. While a number of outlier suppression techniques have been proposed, they either: fail to effectively shrink the quantization range, or incur (relatively) high bit overhead. In this paper, we present ICQuant, a novel framework that leverages outlier statistics to design an efficient index coding scheme for outlier-aware weight-only quantization. Compared to existing outlier suppression techniques requiring $\approx 1$ bit overhead to halve the quantization range, ICQuant requires only $\approx 0.3$ bits; a significant saving in extreme compression regimes (e.g., 2-3 bits per weight). ICQuant can be used on top of any existing quantizers to eliminate outliers, improving the quantization quality. Using just 2.3 bits per weight and simple scalar quantizers, ICQuant improves the zero-shot accuracy of the 2-bit Llama3-70B model by up to 130% and 150% relative to QTIP and QuIP#; and it achieves comparable performance to the best-known fine-tuned quantizer (PV-tuning) without fine-tuning.
Related papers
- PoTPTQ: A Two-step Power-of-Two Post-training for LLMs [27.141872509108122]
Large Language Models (LLMs) have demonstrated remarkable performance across various natural language processing (NLP) tasks.<n>Power-of-two (PoT) quantization is a general tool to counteract this difficulty.<n>We propose a novel POT quantization framework for LLM weights that (i) outperforms state-of-the-art accuracy in extremely low-precision number formats, and (ii) enables faster inference through more efficient dequantization.
arXiv Detail & Related papers (2025-07-16T06:44:14Z) - FineQ: Software-Hardware Co-Design for Low-Bit Fine-Grained Mixed-Precision Quantization of LLMs [13.951330786310262]
FineQ is a software- hardware co-design for low-bit fine-grained mixed-precision quantization of large language models.<n>It partitions the weights into finer-grained clusters and considers the distribution of outliers within these clusters.<n>It achieves higher model accuracy compared to the SOTA mixed-precision quantization algorithm at a close average bit-width.
arXiv Detail & Related papers (2025-04-28T12:47:23Z) - KurTail : Kurtosis-based LLM Quantization [51.24081396305435]
KurTail is a new post-training quantization scheme that mitigates outliers in the activations of large language models.<n>It offers a 13.3% boost in MMLU accuracy and a 15.5% drop in Wiki perplexity compared to QuaRot.<n>It also outperforms SpinQuant with a 2.6% MMLU gain and reduces perplexity by 2.9%, all while reducing the training cost.
arXiv Detail & Related papers (2025-03-03T12:43:06Z) - PTQ1.61: Push the Real Limit of Extremely Low-Bit Post-Training Quantization Methods for Large Language Models [64.84734437930362]
Large Language Models (LLMs) suffer severe performance degradation when facing extremely low-bit (sub 2-bit) quantization.<n>We propose an extremely low-bit PTQ method called PTQ1.61, which enables weight quantization to 1.61-bit for the first time.<n>Experiments indicate our PTQ1.61 achieves state-of-the-art performance in extremely low-bit quantization.
arXiv Detail & Related papers (2025-02-18T08:04:58Z) - LeanQuant: Accurate and Scalable Large Language Model Quantization with Loss-error-aware Grid [36.33062038680275]
Large language models (LLMs) have shown immense potential across various domains.
Post-training quantization has emerged as a promising technique to reduce memory requirements and decoding latency.
We propose LeanQuant, a novel quantization method that is accurate, versatile, and scalable.
arXiv Detail & Related papers (2024-07-14T00:23:51Z) - EfficientQAT: Efficient Quantization-Aware Training for Large Language Models [50.525259103219256]
quantization-aware training (QAT) offers a solution by reducing memory consumption through low-bit representations with minimal accuracy loss.
We propose Efficient Quantization-Aware Training (EfficientQAT), a more feasible QAT algorithm.
EfficientQAT involves two consecutive phases: Block-wise training of all parameters (Block-AP) and end-to-end training of quantization parameters (E2E-QP)
arXiv Detail & Related papers (2024-07-10T17:53:30Z) - Towards Accurate Post-Training Quantization of Vision Transformers via Error Reduction [48.740630807085566]
Post-training quantization (PTQ) for vision transformers (ViTs) has received increasing attention from both academic and industrial communities.<n>Current methods fail to account for the complex interactions between quantized weights and activations, resulting in significant quantization errors and suboptimal performance.<n>This paper presents ERQ, an innovative two-step PTQ method specifically crafted to reduce quantization errors arising from activation and weight quantization sequentially.
arXiv Detail & Related papers (2024-07-09T12:06:03Z) - GPTQT: Quantize Large Language Models Twice to Push the Efficiency [1.3149617027696827]
This paper introduces a new post-training quantization method, GPTQT, to reduce memory usage and enhance processing speed.
Practice has shown that minimizing the quantization error of weights is ineffective, leading to overfitting.
GPTQT employs a progressive two-step approach: initially quantizing weights using Linear quantization to a relatively high bit, followed by converting obtained int weight to lower bit binary coding.
arXiv Detail & Related papers (2024-07-03T08:08:01Z) - decoupleQ: Towards 2-bit Post-Training Uniform Quantization via decoupling Parameters into Integer and Floating Points [10.238677144792279]
decoupleQ abandons the traditional quantization paradigm and decouples the model parameters into integer and floating-point parts.
Our method has achieved well on-line accuracy near fp16/bf16 on the 2-bit quantization of large speech models in ByteDance.
arXiv Detail & Related papers (2024-04-19T10:02:53Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.