Artificial Intelligence in Government: Why People Feel They Lose Control
- URL: http://arxiv.org/abs/2505.01085v1
- Date: Fri, 02 May 2025 07:46:41 GMT
- Title: Artificial Intelligence in Government: Why People Feel They Lose Control
- Authors: Alexander Wuttke, Adrian Rauchfleisch, Andreas Jungherr,
- Abstract summary: The use of Artificial Intelligence in public administration is expanding rapidly.<n>While AI promises greater efficiency and responsiveness, its integration into government functions raises concerns about fairness, transparency, and accountability.<n>This article applies principal-agent theory to AI adoption as a special case of delegation.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of Artificial Intelligence (AI) in public administration is expanding rapidly, moving from automating routine tasks to deploying generative and agentic systems that autonomously act on goals. While AI promises greater efficiency and responsiveness, its integration into government functions raises concerns about fairness, transparency, and accountability. This article applies principal-agent theory (PAT) to conceptualize AI adoption as a special case of delegation, highlighting three core tensions: assessability (can decisions be understood?), dependency (can the delegation be reversed?), and contestability (can decisions be challenged?). These structural challenges may lead to a "failure-by-success" dynamic, where early functional gains obscure long-term risks to democratic legitimacy. To test this framework, we conducted a pre-registered factorial survey experiment across tax, welfare, and law enforcement domains. Our findings show that although efficiency gains initially bolster trust, they simultaneously reduce citizens' perceived control. When the structural risks come to the foreground, institutional trust and perceived control both drop sharply, suggesting that hidden costs of AI adoption significantly shape public attitudes. The study demonstrates that PAT offers a powerful lens for understanding the institutional and political implications of AI in government, emphasizing the need for policymakers to address delegation risks transparently to maintain public trust.
Related papers
- Public Opinion and The Rise of Digital Minds: Perceived Risk, Trust, and Regulation Support [4.982210700018631]
This study examines how public trust in institutions and AI technologies, along with perceived risks, shape preferences for AI regulation.<n>Individuals with higher trust in government favor regulation, while those with greater trust in AI companies and AI technologies are less inclined to support restrictions.
arXiv Detail & Related papers (2025-04-30T17:56:23Z) - Transfeminist AI Governance [0.0]
Article re-imagines the governance of artificial intelligence (AI) through a transfeminist lens.<n>Building upon trans and feminist theories of ethics, I introduce an approach to transfeminist AI governance.
arXiv Detail & Related papers (2025-03-19T20:25:59Z) - AGI, Governments, and Free Societies [0.0]
We argue that AGI poses distinct risks of pushing societies toward either a 'despotic Leviathan' or an 'absent Leviathan'<n>We analyze how these dynamics could unfold through three key channels.<n> Enhanced state capacity through AGI could enable unprecedented surveillance and control, potentially entrenching authoritarian practices.<n>Conversely, rapid diffusion of AGI capabilities to non-state actors could undermine state legitimacy and governability.
arXiv Detail & Related papers (2025-02-14T03:55:38Z) - Agentic AI: Autonomy, Accountability, and the Algorithmic Society [0.2209921757303168]
Agentic Artificial Intelligence (AI) can autonomously pursue long-term goals, make decisions, and execute complex, multi-turn.<n>This transition from advisory roles to proactive execution challenges established legal, economic, and creative frameworks.<n>We explore challenges in three interrelated domains: creativity and intellectual property, legal and ethical considerations, and competitive effects.
arXiv Detail & Related papers (2025-02-01T03:14:59Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Do Responsible AI Artifacts Advance Stakeholder Goals? Four Key Barriers Perceived by Legal and Civil Stakeholders [59.17981603969404]
The responsible AI (RAI) community has introduced numerous processes and artifacts to facilitate transparency and support the governance of AI systems.
We conduct semi-structured interviews with 19 government, legal, and civil society stakeholders who inform policy and advocacy around responsible AI efforts.
We organize these beliefs into four barriers that help explain how RAI artifacts may (inadvertently) reconfigure power relations across civil society, government, and industry.
arXiv Detail & Related papers (2024-08-22T00:14:37Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
Governments and companies have started to leverage compute as a means to govern AI.
compute-based policies and technologies have the potential to assist in these areas, but there is significant variation in their readiness for implementation.
naive or poorly scoped approaches to compute governance carry significant risks in areas like privacy, economic impacts, and centralization of power.
arXiv Detail & Related papers (2024-02-13T21:10:21Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - A Trust Framework for Government Use of Artificial Intelligence and
Automated Decision Making [0.1527458325979785]
This paper identifies the challenges of the mechanisation, digitisation and automation of public sector systems and processes.
It proposes a modern and practical framework to ensure and assure ethical and high veracity Artificial Intelligence (AI) or Automated Decision Making (ADM) systems in public institutions.
arXiv Detail & Related papers (2022-08-22T06:51:15Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.