LLM Security: Vulnerabilities, Attacks, Defenses, and Countermeasures
- URL: http://arxiv.org/abs/2505.01177v1
- Date: Fri, 02 May 2025 10:35:26 GMT
- Title: LLM Security: Vulnerabilities, Attacks, Defenses, and Countermeasures
- Authors: Francisco Aguilera-MartÃnez, Fernando Berzal,
- Abstract summary: This survey seeks to define and categorize the various attacks targeting large language models (LLMs)<n>A thorough analysis of these attacks is presented, alongside an exploration of defense mechanisms designed to mitigate such threats.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) continue to evolve, it is critical to assess the security threats and vulnerabilities that may arise both during their training phase and after models have been deployed. This survey seeks to define and categorize the various attacks targeting LLMs, distinguishing between those that occur during the training phase and those that affect already trained models. A thorough analysis of these attacks is presented, alongside an exploration of defense mechanisms designed to mitigate such threats. Defenses are classified into two primary categories: prevention-based and detection-based defenses. Furthermore, our survey summarizes possible attacks and their corresponding defense strategies. It also provides an evaluation of the effectiveness of the known defense mechanisms for the different security threats. Our survey aims to offer a structured framework for securing LLMs, while also identifying areas that require further research to improve and strengthen defenses against emerging security challenges.
Related papers
- A Survey on Model Extraction Attacks and Defenses for Large Language Models [55.60375624503877]
Model extraction attacks pose significant security threats to deployed language models.<n>This survey provides a comprehensive taxonomy of extraction attacks and defenses, categorizing attacks into functionality extraction, training data extraction, and prompt-targeted attacks.<n>We examine defense mechanisms organized into model protection, data privacy protection, and prompt-targeted strategies, evaluating their effectiveness across different deployment scenarios.
arXiv Detail & Related papers (2025-06-26T22:02:01Z) - Benchmarking Misuse Mitigation Against Covert Adversaries [80.74502950627736]
Existing language model safety evaluations focus on overt attacks and low-stakes tasks.<n>We develop Benchmarks for Stateful Defenses (BSD), a data generation pipeline that automates evaluations of covert attacks and corresponding defenses.<n>Our evaluations indicate that decomposition attacks are effective misuse enablers, and highlight stateful defenses as a countermeasure.
arXiv Detail & Related papers (2025-06-06T17:33:33Z) - A Critical Evaluation of Defenses against Prompt Injection Attacks [95.81023801370073]
Large Language Models (LLMs) are vulnerable to prompt injection attacks.<n>Several defenses have recently been proposed, often claiming to mitigate these attacks successfully.<n>We argue that existing studies lack a principled approach to evaluating these defenses.
arXiv Detail & Related papers (2025-05-23T19:39:56Z) - Attack and defense techniques in large language models: A survey and new perspectives [5.600972861188751]
Large Language Models (LLMs) have become central to numerous natural language processing tasks, but their vulnerabilities present security and ethical challenges.<n>This systematic survey explores the evolving landscape of attack and defense techniques in LLMs.
arXiv Detail & Related papers (2025-05-02T03:37:52Z) - Safety at Scale: A Comprehensive Survey of Large Model Safety [298.05093528230753]
We present a comprehensive taxonomy of safety threats to large models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats.<n>We identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices.
arXiv Detail & Related papers (2025-02-02T05:14:22Z) - The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
The vulnerability of Vision Large Language Models (VLLMs) to jailbreak attacks appears as no surprise.<n>Recent defense mechanisms against these attacks have reached near-saturation performance on benchmark evaluations.
arXiv Detail & Related papers (2024-11-13T07:57:19Z) - Recent Advances in Attack and Defense Approaches of Large Language Models [27.271665614205034]
Large Language Models (LLMs) have revolutionized artificial intelligence and machine learning through their advanced text processing and generating capabilities.<n>Their widespread deployment has raised significant safety and reliability concerns.<n>This paper reviews current research on LLM vulnerabilities and threats, and evaluates the effectiveness of contemporary defense mechanisms.
arXiv Detail & Related papers (2024-09-05T06:31:37Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - Exploring Vulnerabilities and Protections in Large Language Models: A Survey [1.6179784294541053]
This survey examines the security challenges of Large Language Models (LLMs)
It focuses on two main areas: Prompt Hacking and Adversarial Attacks.
By detailing these security issues, the survey contributes to the broader discussion on creating resilient AI systems.
arXiv Detail & Related papers (2024-06-01T00:11:09Z) - A Comprehensive Survey of Attack Techniques, Implementation, and Mitigation Strategies in Large Language Models [0.0]
This article explores two attack categories: attacks on models themselves and attacks on model applications.
The former requires expertise, access to model data, and significant implementation time.
The latter is more accessible to attackers and has seen increased attention.
arXiv Detail & Related papers (2023-12-18T07:07:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.