FlowDubber: Movie Dubbing with LLM-based Semantic-aware Learning and Flow Matching based Voice Enhancing
- URL: http://arxiv.org/abs/2505.01263v1
- Date: Fri, 02 May 2025 13:30:19 GMT
- Title: FlowDubber: Movie Dubbing with LLM-based Semantic-aware Learning and Flow Matching based Voice Enhancing
- Authors: Gaoxiang Cong, Liang Li, Jiadong Pan, Zhedong Zhang, Amin Beheshti, Anton van den Hengel, Yuankai Qi, Qingming Huang,
- Abstract summary: Movie Dubbing aims to convert scripts into speeches that align with the given movie clip in both temporal and emotional aspects.<n>Existing methods focus primarily on reducing the word error rate while ignoring the importance of lip-sync and acoustic quality.<n>We propose FlowDubber, which achieves high-quality audio-visual sync and pronunciation by incorporating a large speech language model and dual contrastive aligning.
- Score: 78.83988199306901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Movie Dubbing aims to convert scripts into speeches that align with the given movie clip in both temporal and emotional aspects while preserving the vocal timbre of a given brief reference audio. Existing methods focus primarily on reducing the word error rate while ignoring the importance of lip-sync and acoustic quality. To address these issues, we propose a large language model (LLM) based flow matching architecture for dubbing, named FlowDubber, which achieves high-quality audio-visual sync and pronunciation by incorporating a large speech language model and dual contrastive aligning while achieving better acoustic quality via the proposed voice-enhanced flow matching than previous works. First, we introduce Qwen2.5 as the backbone of LLM to learn the in-context sequence from movie scripts and reference audio. Then, the proposed semantic-aware learning focuses on capturing LLM semantic knowledge at the phoneme level. Next, dual contrastive aligning (DCA) boosts mutual alignment with lip movement, reducing ambiguities where similar phonemes might be confused. Finally, the proposed Flow-based Voice Enhancing (FVE) improves acoustic quality in two aspects, which introduces an LLM-based acoustics flow matching guidance to strengthen clarity and uses affine style prior to enhance identity when recovering noise into mel-spectrograms via gradient vector field prediction. Extensive experiments demonstrate that our method outperforms several state-of-the-art methods on two primary benchmarks. The demos are available at {\href{https://galaxycong.github.io/LLM-Flow-Dubber/}{\textcolor{red}{https://galaxycong.github.io/LLM-Flow-Dubber/}}}.
Related papers
- SpA2V: Harnessing Spatial Auditory Cues for Audio-driven Spatially-aware Video Generation [50.03810359300705]
SpA2V decomposes the generation process into two stages: audio-guided video planning and layout-grounded video generation.<n>We show that SpA2V excels in generating realistic videos with semantic and spatial alignment to the input audios.
arXiv Detail & Related papers (2025-08-01T17:05:04Z) - LeVo: High-Quality Song Generation with Multi-Preference Alignment [49.94713419553945]
We introduce LeVo, an LM-based framework consisting of LeLM and a music accompaniment.<n>LeVo is capable of parallelly modeling two types of tokens: mixed tokens, which represent the combined audio of vocals and to achieve vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment.<n> Experimental results demonstrate that LeVo consistently outperforms existing methods on both objective and subjective metrics.
arXiv Detail & Related papers (2025-06-09T07:57:24Z) - From Alignment to Advancement: Bootstrapping Audio-Language Alignment with Synthetic Data [55.2480439325792]
Audio-aware large language models (ALLMs) have recently made great strides in understanding and processing audio inputs.<n>These models are typically adapted from text-based large language models (LLMs) through additional training on audio-related tasks.<n>We propose a data generation framework that produces contrastive-like training data, designed to enhance ALLMs' ability to differentiate between present and absent sounds.
arXiv Detail & Related papers (2025-05-26T16:08:41Z) - Prosody-Enhanced Acoustic Pre-training and Acoustic-Disentangled Prosody Adapting for Movie Dubbing [60.38045088180188]
We propose an acoustic-prosody disentangled two-stage method to achieve high-quality dubbing generation with precise prosody alignment.<n>We incorporate an in-domain emotion analysis module to reduce the impact of visual domain shifts across different movies.<n>Our method performs favorably against the state-of-the-art models on two primary benchmarks.
arXiv Detail & Related papers (2025-03-15T08:25:57Z) - C3LLM: Conditional Multimodal Content Generation Using Large Language Models [66.11184017840688]
We introduce C3LLM, a novel framework combining three tasks of video-to-audio, audio-to-text, and text-to-audio together.
C3LLM adapts the Large Language Model (LLM) structure as a bridge for aligning different modalities.
Our method combines the previous tasks of audio understanding, video-to-audio generation, and text-to-audio generation together into one unified model.
arXiv Detail & Related papers (2024-05-25T09:10:12Z) - StyleDubber: Towards Multi-Scale Style Learning for Movie Dubbing [125.86266166482704]
We propose StyleDubber, which switches dubbing learning from the frame level to phoneme level.
It contains three main components: (1) A multimodal style adaptor operating at the phoneme level to learn pronunciation style from the reference audio, and generate intermediate representations informed by the facial emotion presented in the video; (2) An utterance-level style learning module, which guides both the mel-spectrogram decoding and the refining processes from the intermediate embeddings to improve the overall style expression; and (3) a phoneme-guided lip aligner to maintain lip sync.
arXiv Detail & Related papers (2024-02-20T01:28:34Z) - Diff-Foley: Synchronized Video-to-Audio Synthesis with Latent Diffusion
Models [12.898486592791604]
We present Diff-Foley, a synchronized Video-to-Audio synthesis method with a latent diffusion model (LDM)
We show Diff-Foley achieves state-of-the-art V2A performance on current large scale V2A dataset.
arXiv Detail & Related papers (2023-06-29T12:39:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.