Soft-Masked Semi-Dual Optimal Transport for Partial Domain Adaptation
- URL: http://arxiv.org/abs/2505.01664v1
- Date: Sat, 03 May 2025 03:20:17 GMT
- Title: Soft-Masked Semi-Dual Optimal Transport for Partial Domain Adaptation
- Authors: Yi-Ming Zhai, Chuan-Xian Ren, Hong Yan,
- Abstract summary: Partial domain adaptation (PDA) is a general and practical scenario in which the target label space is a subset of the source one.<n>The challenges of PDA exist due to not only domain shift but also the non-identical label spaces of domains.<n>In this paper, a Soft-masked Semi-dual Optimal Transport (SSOT) method is proposed to deal with the PDA problem.
- Score: 16.213569477689916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual domain adaptation aims to learn discriminative and domain-invariant representation for an unlabeled target domain by leveraging knowledge from a labeled source domain. Partial domain adaptation (PDA) is a general and practical scenario in which the target label space is a subset of the source one. The challenges of PDA exist due to not only domain shift but also the non-identical label spaces of domains. In this paper, a Soft-masked Semi-dual Optimal Transport (SSOT) method is proposed to deal with the PDA problem. Specifically, the class weights of domains are estimated, and then a reweighed source domain is constructed, which is favorable in conducting class-conditional distribution matching with the target domain. A soft-masked transport distance matrix is constructed by category predictions, which will enhance the class-oriented representation ability of optimal transport in the shared feature space. To deal with large-scale optimal transport problems, the semi-dual formulation of the entropy-regularized Kantorovich problem is employed since it can be optimized by gradient-based algorithms. Further, a neural network is exploited to approximate the Kantorovich potential due to its strong fitting ability. This network parametrization also allows the generalization of the dual variable outside the supports of the input distribution. The SSOT model is built upon neural networks, which can be optimized alternately in an end-to-end manner. Extensive experiments are conducted on four benchmark datasets to demonstrate the effectiveness of SSOT.
Related papers
- Partial Domain Adaptation via Importance Sampling-based Shift Correction [22.133232771742527]
Partial domain adaptation (PDA) is a challenging task in real-world machine learning scenarios.<n>We propose a novel importance sampling-based shift correction (IS$2$C) method, where new labeled data are sampled from a built sampling domain.<n>We provide theoretical guarantees for IS$2$C by proving that the generalization error can be sufficiently dominated by IS$2$C.
arXiv Detail & Related papers (2025-07-27T09:19:07Z) - Bi-discriminator Domain Adversarial Neural Networks with Class-Level
Gradient Alignment [87.8301166955305]
We propose a novel bi-discriminator domain adversarial neural network with class-level gradient alignment.
BACG resorts to gradient signals and second-order probability estimation for better alignment of domain distributions.
In addition, inspired by contrastive learning, we develop a memory bank-based variant, i.e. Fast-BACG, which can greatly shorten the training process.
arXiv Detail & Related papers (2023-10-21T09:53:17Z) - CDA: Contrastive-adversarial Domain Adaptation [11.354043674822451]
We propose a two-stage model for domain adaptation called textbfContrastive-adversarial textbfDomain textbfAdaptation textbf(CDA).
While the adversarial component facilitates domain-level alignment, two-stage contrastive learning exploits class information to achieve higher intra-class compactness across domains.
arXiv Detail & Related papers (2023-01-10T07:43:21Z) - Constrained Maximum Cross-Domain Likelihood for Domain Generalization [14.91361835243516]
Domain generalization aims to learn a generalizable model on multiple source domains, which is expected to perform well on unseen test domains.
In this paper, we propose a novel domain generalization method, which minimizes the KL-divergence between posterior distributions from different domains.
Experiments on four standard benchmark datasets, i.e., Digits-DG, PACS, Office-Home and miniDomainNet, highlight the superior performance of our method.
arXiv Detail & Related papers (2022-10-09T03:41:02Z) - From Big to Small: Adaptive Learning to Partial-Set Domains [94.92635970450578]
Domain adaptation targets at knowledge acquisition and dissemination from a labeled source domain to an unlabeled target domain under distribution shift.
Recent advances show that deep pre-trained models of large scale endow rich knowledge to tackle diverse downstream tasks of small scale.
This paper introduces Partial Domain Adaptation (PDA), a learning paradigm that relaxes the identical class space assumption to that the source class space subsumes the target class space.
arXiv Detail & Related papers (2022-03-14T07:02:45Z) - Amplitude Spectrum Transformation for Open Compound Domain Adaptive
Semantic Segmentation [62.68759523116924]
Open compound domain adaptation (OCDA) has emerged as a practical adaptation setting.
We propose a novel feature space Amplitude Spectrum Transformation (AST)
arXiv Detail & Related papers (2022-02-09T05:40:34Z) - TDACNN: Target-domain-free Domain Adaptation Convolutional Neural
Network for Drift Compensation in Gas Sensors [6.451060076703026]
In this paper, deep learning based on a target-domain-free domain adaptation convolutional neural network (TDACNN) is proposed.
The main concept is that CNNs extract not only the domain-specific features of samples but also the domain-invariant features underlying both the source and target domains.
Experiments on two datasets drift under different settings demonstrate the superiority of TDACNN compared with several state-of-the-art methods.
arXiv Detail & Related papers (2021-10-14T16:30:17Z) - Coarse to Fine: Domain Adaptive Crowd Counting via Adversarial Scoring
Network [58.05473757538834]
This paper proposes a novel adversarial scoring network (ASNet) to bridge the gap across domains from coarse to fine granularity.
Three sets of migration experiments show that the proposed methods achieve state-of-the-art counting performance.
arXiv Detail & Related papers (2021-07-27T14:47:24Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Deep Residual Correction Network for Partial Domain Adaptation [79.27753273651747]
Deep domain adaptation methods have achieved appealing performance by learning transferable representations from a well-labeled source domain to a different but related unlabeled target domain.
This paper proposes an efficiently-implemented Deep Residual Correction Network (DRCN)
Comprehensive experiments on partial, traditional and fine-grained cross-domain visual recognition demonstrate that DRCN is superior to the competitive deep domain adaptation approaches.
arXiv Detail & Related papers (2020-04-10T06:07:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.