Efficient Shapley Value-based Non-Uniform Pruning of Large Language Models
- URL: http://arxiv.org/abs/2505.01731v3
- Date: Wed, 21 May 2025 01:38:25 GMT
- Title: Efficient Shapley Value-based Non-Uniform Pruning of Large Language Models
- Authors: Chuan Sun, Han Yu, Lizhen Cui, Xiaoxiao Li,
- Abstract summary: Pruning large language models (LLMs) is a promising solution for reducing model sizes and computational complexity while preserving performance.<n>We propose the Shapley Value-based Non-Uniform Pruning (SV-NUP) method for LLMs.<n>This approach quantifies the contribution of each transformer layer to the overall model performance, enabling the assignment of tailored pruning budgets to different layers to retain critical parameters.
- Score: 43.4962029013024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pruning large language models (LLMs) is a promising solution for reducing model sizes and computational complexity while preserving performance. Traditional layer-wise pruning methods often adopt a uniform sparsity approach across all layers, which leads to suboptimal performance due to the varying significance of individual transformer layers within the model not being accounted for. To this end, we propose the Shapley Value-based Non-Uniform Pruning (SV-NUP) method for LLMs. This approach quantifies the contribution of each transformer layer to the overall model performance, enabling the assignment of tailored pruning budgets to different layers to retain critical parameters. To further improve efficiency, we design the Sliding Window-based Shapley Value approximation method. It substantially reduces computational overhead compared to exact SV calculation methods. Extensive experiments on various LLMs including LLaMA-v1, LLaMA-v2 and OPT demonstrate the effectiveness of the proposed approach. The results reveal that non-uniform pruning significantly enhances the performance of pruned models. Notably, SV-NUP achieves a reduction in perplexity (PPL) of 18.01% and 19.55% on LLaMA-7B and LLaMA-13B, respectively, compared to SparseGPT at 70% sparsity.
Related papers
- Seesaw: High-throughput LLM Inference via Model Re-sharding [8.840996987380484]
We present Seesaw, an inference engine optimized for throughput-oriented tasks.<n>Key idea behind Seesaw is dynamic model re-sharding, a technique that facilitates the dynamic reconfiguration of parallelization strategies.
arXiv Detail & Related papers (2025-03-09T04:14:06Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.<n>LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.<n>We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Zeroth-Order Fine-Tuning of LLMs in Random Subspaces [66.27334633749734]
As language models grow in size, memory demands for backpropagation increase.
Zeroth-order (ZOZO) optimization methods offer a memory-efficient alternative.
We show that SubZero enhances fine-tuning and achieves faster results compared to standard ZOZO approaches.
arXiv Detail & Related papers (2024-10-11T17:01:43Z) - A Convex-optimization-based Layer-wise Post-training Pruner for Large Language Models [24.185245582500876]
We introduce FISTAPruner, the first post-training pruner based on convex optimization models and algorithms.
FISTAPruner incorporates an intra-layer cumulative error correction mechanism and supports parallel pruning.
We evaluate FISTAPruner on models such as OPT, LLaMA, LLaMA-2, and LLaMA-3 with 125M to 70B parameters under unstructured and 2:4 semi-structured sparsity.
arXiv Detail & Related papers (2024-08-07T12:33:46Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
Adaptive Sparse Trainer (AST) is a novel and efficient retraining framework tailored for semi-structured sparse models.<n>AST reduces the perplexity and zero-shot accuracy gap between dense and 2:4 semi-structured sparse models to 0.6 and 1.16%, respectively.
arXiv Detail & Related papers (2024-07-30T06:33:44Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
Sparsity-Preserved efficient fine-tuning method for large language models.
Code will be made available at https://github.com/Lucky-Lance/SPP.
arXiv Detail & Related papers (2024-05-25T04:55:27Z) - Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity [88.62935593360162]
Large Language Models (LLMs) are renowned for their remarkable performance across diverse domains.<n>We introduce a novel LLM pruning methodology that incorporates a tailored set of non-uniform layerwise sparsity ratios, termed as Outlier Weighed Layerwise sparsity (OWL)<n>OWL exhibits a remarkable performance gain, surpassing the state-of-the-art Wanda and SparseGPT by 61.22 and 6.80 perplexity at a high sparsity level of 70%, respectively.
arXiv Detail & Related papers (2023-10-08T14:22:58Z) - ECoFLaP: Efficient Coarse-to-Fine Layer-Wise Pruning for Vision-Language
Models [70.45441031021291]
Large Vision-Language Models (LVLMs) can understand the world comprehensively by integrating rich information from different modalities.
LVLMs are often problematic due to their massive computational/energy costs and carbon consumption.
We propose Efficient Coarse-to-Fine LayerWise Pruning (ECoFLaP), a two-stage coarse-to-fine weight pruning approach for LVLMs.
arXiv Detail & Related papers (2023-10-04T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.