Learning Multi-frame and Monocular Prior for Estimating Geometry in Dynamic Scenes
- URL: http://arxiv.org/abs/2505.01737v3
- Date: Mon, 28 Jul 2025 06:07:41 GMT
- Title: Learning Multi-frame and Monocular Prior for Estimating Geometry in Dynamic Scenes
- Authors: Seong Hyeon Park, Jinwoo Shin,
- Abstract summary: We present a new model, coined MMP, to estimate the geometry in a feed-forward manner.<n>Based on the recent Siamese architecture, we introduce a new trajectory encoding module.<n>We find MMP can achieve state-of-the-art quality in feed-forward pointmap prediction.
- Score: 56.936178608296906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In monocular videos that capture dynamic scenes, estimating the 3D geometry of video contents has been a fundamental challenge in computer vision. Specifically, the task is significantly challenged by the object motion, where existing models are limited to predict only partial attributes of the dynamic scenes, such as depth or pointmaps spanning only over a pair of frames. Since these attributes are inherently noisy under multiple frames, test-time global optimizations are often employed to fully recover the geometry, which is liable to failure and incurs heavy inference costs. To address the challenge, we present a new model, coined MMP, to estimate the geometry in a feed-forward manner, which produces a dynamic pointmap representation that evolves over multiple frames. Specifically, based on the recent Siamese architecture, we introduce a new trajectory encoding module to project point-wise dynamics on the representation for each frame, which can provide significantly improved expressiveness for dynamic scenes. In our experiments, we find MMP can achieve state-of-the-art quality in feed-forward pointmap prediction, e.g., 15.1% enhancement in the regression error.
Related papers
- DGS-LRM: Real-Time Deformable 3D Gaussian Reconstruction From Monocular Videos [52.46386528202226]
We introduce the Deformable Gaussian Splats Large Reconstruction Model (DGS-LRM)<n>It is the first feed-forward method predicting deformable 3D Gaussian splats from a monocular posed video of any dynamic scene.<n>It achieves performance on par with state-of-the-art monocular video 3D tracking methods.
arXiv Detail & Related papers (2025-06-11T17:59:58Z) - Dynamic Point Maps: A Versatile Representation for Dynamic 3D Reconstruction [56.32589034046427]
We introduce Dynamic Point Maps (DPM), extending standard point maps to support 4D tasks such as motion segmentation, scene flow estimation, 3D object tracking, and 2D correspondence.<n>We train a DPM predictor on a mixture of synthetic and real data and evaluate it across diverse benchmarks for video depth prediction, dynamic point cloud reconstruction, 3D scene flow and object pose tracking, achieving state-of-the-art performance.
arXiv Detail & Related papers (2025-03-20T16:41:50Z) - MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.
By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.
We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - Shape of Motion: 4D Reconstruction from a Single Video [51.04575075620677]
We introduce a method capable of reconstructing generic dynamic scenes, featuring explicit, full-sequence-long 3D motion.
We exploit the low-dimensional structure of 3D motion by representing scene motion with a compact set of SE3 motion bases.
Our method achieves state-of-the-art performance for both long-range 3D/2D motion estimation and novel view synthesis on dynamic scenes.
arXiv Detail & Related papers (2024-07-18T17:59:08Z) - NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos [82.74918564737591]
We present a method for learning 3D geometry and physics parameters of a dynamic scene from only a monocular RGB video input.
Experiments show that our method achieves superior mesh and video reconstruction of dynamic scenes compared to competing Neural Field approaches.
arXiv Detail & Related papers (2022-10-22T04:57:55Z) - Temporal View Synthesis of Dynamic Scenes through 3D Object Motion
Estimation with Multi-Plane Images [8.185918509343816]
We study the problem of temporal view synthesis (TVS), where the goal is to predict the next frames of a video.
In this work, we consider the TVS of dynamic scenes in which both the user and objects are moving.
We predict the motion of objects by isolating and estimating the 3D object motion in the past frames and then extrapolating it.
arXiv Detail & Related papers (2022-08-19T17:40:13Z) - Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection
Consistency [114.02182755620784]
We present an end-to-end joint training framework that explicitly models 6-DoF motion of multiple dynamic objects, ego-motion and depth in a monocular camera setup without supervision.
Our framework is shown to outperform the state-of-the-art depth and motion estimation methods.
arXiv Detail & Related papers (2021-02-04T14:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.