CAMOUFLAGE: Exploiting Misinformation Detection Systems Through LLM-driven Adversarial Claim Transformation
- URL: http://arxiv.org/abs/2505.01900v1
- Date: Sat, 03 May 2025 19:14:24 GMT
- Title: CAMOUFLAGE: Exploiting Misinformation Detection Systems Through LLM-driven Adversarial Claim Transformation
- Authors: Mazal Bethany, Nishant Vishwamitra, Cho-Yu Jason Chiang, Peyman Najafirad,
- Abstract summary: Existing black-box text-based adversarial attacks are ill-suited for evidence-based misinformation detection systems.<n>We present CAMOUFLAGE, an iterative, LLM-driven approach that employs a two-agent system to create adversarial claim rewritings.<n>We evaluate CAMOUFLAGE on four systems, including two recent academic systems and two real-world APIs, with an average attack success rate of 46.92%.
- Score: 4.02943411607022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated evidence-based misinformation detection systems, which evaluate the veracity of short claims against evidence, lack comprehensive analysis of their adversarial vulnerabilities. Existing black-box text-based adversarial attacks are ill-suited for evidence-based misinformation detection systems, as these attacks primarily focus on token-level substitutions involving gradient or logit-based optimization strategies, which are incapable of fooling the multi-component nature of these detection systems. These systems incorporate both retrieval and claim-evidence comparison modules, which requires attacks to break the retrieval of evidence and/or the comparison module so that it draws incorrect inferences. We present CAMOUFLAGE, an iterative, LLM-driven approach that employs a two-agent system, a Prompt Optimization Agent and an Attacker Agent, to create adversarial claim rewritings that manipulate evidence retrieval and mislead claim-evidence comparison, effectively bypassing the system without altering the meaning of the claim. The Attacker Agent produces semantically equivalent rewrites that attempt to mislead detectors, while the Prompt Optimization Agent analyzes failed attack attempts and refines the prompt of the Attacker to guide subsequent rewrites. This enables larger structural and stylistic transformations of the text rather than token-level substitutions, adapting the magnitude of changes based on previous outcomes. Unlike existing approaches, CAMOUFLAGE optimizes its attack solely based on binary model decisions to guide its rewriting process, eliminating the need for classifier logits or extensive querying. We evaluate CAMOUFLAGE on four systems, including two recent academic systems and two real-world APIs, with an average attack success rate of 46.92\% while preserving textual coherence and semantic equivalence to the original claims.
Related papers
- DeRAG: Black-box Adversarial Attacks on Multiple Retrieval-Augmented Generation Applications via Prompt Injection [0.9499594220629591]
Adrial prompt attacks can significantly alter the reliability of Retrieval-Augmented Generation (RAG) systems.<n>We present a novel method that applies Differential Evolution (DE) to optimize adversarial prompt suffixes for RAG-based question answering.
arXiv Detail & Related papers (2025-07-20T16:48:20Z) - Benchmarking Unified Face Attack Detection via Hierarchical Prompt Tuning [58.16354555208417]
PAD and FFD are proposed to protect face data from physical media-based Presentation Attacks and digital editing-based DeepFakes, respectively.<n>The lack of a Unified Face Attack Detection model to simultaneously handle attacks in these two categories is mainly attributed to two factors.<n>We present a novel Visual-Language Model-based Hierarchical Prompt Tuning Framework that adaptively explores multiple classification criteria from different semantic spaces.
arXiv Detail & Related papers (2025-05-19T16:35:45Z) - Stealthy LLM-Driven Data Poisoning Attacks Against Embedding-Based Retrieval-Augmented Recommender Systems [16.79952669254101]
We study provider-side data poisoning in retrieval-augmented recommender systems (RAG)<n>By modifying only a small fraction of tokens within item descriptions, an attacker can significantly promote or demote targeted items.<n>Experiments on MovieLens, using two large language model (LLM) retrieval modules, show that even subtle attacks shift final rankings and item exposures while eluding naive detection.
arXiv Detail & Related papers (2025-05-08T12:53:42Z) - Residual-Evasive Attacks on ADMM in Distributed Optimization [2.999222219373899]
This paper presents two attack strategies designed to evade detection in ADMM-based systems.<n>We show that our attacks remain undetected by keeping the residual largely unchanged.<n>A comparison of the two strategies, along with commonly used naive attacks, reveals trade-offs between simplicity, detectability, and effectiveness.
arXiv Detail & Related papers (2025-04-22T09:12:27Z) - Debate-Driven Multi-Agent LLMs for Phishing Email Detection [0.0]
We propose a multi-agent large language model (LLM) prompting technique that simulates deceptive debates among agents to detect phishing emails.<n>Our approach uses two LLM agents to present arguments for or against the classification task, with a judge agent adjudicating the final verdict.<n>Results show that the debate structure itself is sufficient to yield accurate decisions without extra prompting strategies.
arXiv Detail & Related papers (2025-03-27T23:18:14Z) - Illusions of Relevance: Using Content Injection Attacks to Deceive Retrievers, Rerankers, and LLM Judges [52.96987928118327]
We find that embedding models for retrieval, rerankers, and large language model (LLM) relevance judges are vulnerable to content injection attacks.<n>We identify two primary threats: (1) inserting unrelated or harmful content within passages that still appear deceptively "relevant", and (2) inserting entire queries or key query terms into passages to boost their perceived relevance.<n>Our study systematically examines the factors that influence an attack's success, such as the placement of injected content and the balance between relevant and non-relevant material.
arXiv Detail & Related papers (2025-01-30T18:02:15Z) - TrustRAG: Enhancing Robustness and Trustworthiness in RAG [31.231916859341865]
TrustRAG is a framework that systematically filters compromised and irrelevant contents before they are retrieved for generation.<n>TrustRAG delivers substantial improvements in retrieval accuracy, efficiency, and attack resistance compared to existing approaches.
arXiv Detail & Related papers (2025-01-01T15:57:34Z) - Toward Improving Synthetic Audio Spoofing Detection Robustness via Meta-Learning and Disentangled Training With Adversarial Examples [33.445126880876415]
We propose a reliable and robust spoofing detection system to filter out spoofing attacks instead of having them reach the automatic speaker verification system.
A weighted additive angular margin loss is proposed to address the data imbalance issue, and different margins has been assigned to improve generalization to unseen spoofing attacks.
We craft adversarial examples by adding imperceptible perturbations to spoofing speech as a data augmentation strategy, then we use an auxiliary batch normalization to guarantee that corresponding normalization statistics are performed exclusively on the adversarial examples.
arXiv Detail & Related papers (2024-08-23T19:26:54Z) - AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
Adversarial Contrastive Prompt Tuning (ACPT) is proposed to fine-tune the CLIP image encoder to extract similar embeddings for any two intermediate adversarial queries.
We show that ACPT can detect 7 state-of-the-art query-based attacks with $>99%$ detection rate within 5 shots.
We also show that ACPT is robust to 3 types of adaptive attacks.
arXiv Detail & Related papers (2024-08-04T09:53:50Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
Large language models (LLMs) present significant safety and ethical risks if exploited by malicious users.
Recent works have proposed algorithms to detect LLM-generated text and protect LLMs.
We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation.
arXiv Detail & Related papers (2023-05-31T10:08:37Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
We show that meaning-preserving changes in input text can mislead the models.
We also introduce BODEGA: a benchmark for testing both victim models and attack methods on misinformation detection tasks.
Our experimental results show that modern large language models are often more vulnerable to attacks than previous, smaller solutions.
arXiv Detail & Related papers (2023-03-14T16:11:47Z) - Generative Adversarial Network-Driven Detection of Adversarial Tasks in
Mobile Crowdsensing [5.675436513661266]
Crowdsensing systems are vulnerable to various attacks as they build on non-dedicated and ubiquitous properties.
Previous works suggest that GAN-based attacks exhibit more crucial devastation than empirically designed attack samples.
This paper aims to detect intelligently designed illegitimate sensing service requests by integrating a GAN-based model.
arXiv Detail & Related papers (2022-02-16T00:23:25Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
We present a novel framework to generate adversarial spoofing signals that violate physical properties of the system.
We analyze four anomaly detectors published at top security conferences.
arXiv Detail & Related papers (2020-12-07T11:02:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.