Efficient Curvature-Aware Hypergradient Approximation for Bilevel Optimization
- URL: http://arxiv.org/abs/2505.02101v1
- Date: Sun, 04 May 2025 13:13:29 GMT
- Title: Efficient Curvature-Aware Hypergradient Approximation for Bilevel Optimization
- Authors: Youran Dong, Junfeng Yang, Wei Yao, Jin Zhang,
- Abstract summary: Bilevel optimization is a powerful tool for many machine learning problems.<n>We propose a technique for incorporating curvature information into the approximation of hypergradients.<n>We present a novel algorithmic framework based on the resulting enhanced hypergradient.
- Score: 10.939142192058004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bilevel optimization is a powerful tool for many machine learning problems, such as hyperparameter optimization and meta-learning. Estimating hypergradients (also known as implicit gradients) is crucial for developing gradient-based methods for bilevel optimization. In this work, we propose a computationally efficient technique for incorporating curvature information into the approximation of hypergradients and present a novel algorithmic framework based on the resulting enhanced hypergradient computation. We provide convergence rate guarantees for the proposed framework in both deterministic and stochastic scenarios, particularly showing improved computational complexity over popular gradient-based methods in the deterministic setting. This improvement in complexity arises from a careful exploitation of the hypergradient structure and the inexact Newton method. In addition to the theoretical speedup, numerical experiments demonstrate the significant practical performance benefits of incorporating curvature information.
Related papers
- qNBO: quasi-Newton Meets Bilevel Optimization [26.0555315825777]
Bilevel optimization, addressing challenges in hierarchical learning tasks, has gained significant interest in machine learning.<n>We introduce a general framework to address these computational challenges in a coordinated manner.<n>Specifically, we leverage quasi-Newton algorithms to accelerate the resolution of the lower-level problem while efficiently approximating the inverse Hessian-vector product.
arXiv Detail & Related papers (2025-02-03T05:36:45Z) - Bilevel Learning with Inexact Stochastic Gradients [2.247833425312671]
Bilevel learning has gained prominence in machine learning, inverse problems, and imaging applications.<n>The large-scale nature of these problems has led to the development of inexact and computationally efficient methods.
arXiv Detail & Related papers (2024-12-16T18:18:47Z) - Towards Differentiable Multilevel Optimization: A Gradient-Based Approach [1.6114012813668932]
This paper introduces a novel gradient-based approach for multilevel optimization.
Our method significantly reduces computational complexity while improving both solution accuracy and convergence speed.
To the best of our knowledge, this is one of the first algorithms to provide a general version of implicit differentiation.
arXiv Detail & Related papers (2024-10-15T06:17:59Z) - Optimal Guarantees for Algorithmic Reproducibility and Gradient
Complexity in Convex Optimization [55.115992622028685]
Previous work suggests that first-order methods would need to trade-off convergence rate (gradient convergence rate) for better.
We demonstrate that both optimal complexity and near-optimal convergence guarantees can be achieved for smooth convex minimization and smooth convex-concave minimax problems.
arXiv Detail & Related papers (2023-10-26T19:56:52Z) - Efficient Gradient Approximation Method for Constrained Bilevel
Optimization [2.0305676256390934]
Bilevel optimization has been developed with large-scale high-dimensional data.
This paper considers a constrained bilevel problem with convex and non-differentiable approximations.
arXiv Detail & Related papers (2023-02-03T19:34:56Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
It is desired to design a universal framework for adaptive algorithms to solve general problems.
In particular, our novel framework provides adaptive methods under non convergence support for setting.
arXiv Detail & Related papers (2021-06-15T15:16:28Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
We show that an increasing large momentum parameter for the first-order moment is sufficient for adaptive scaling.<n>We also give insights for increasing the momentum in a stagewise manner in accordance with stagewise decreasing step size.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.