Realization of universal nonadiabatic holonomic quantum gates in trapped ion system
- URL: http://arxiv.org/abs/2505.02137v1
- Date: Sun, 04 May 2025 14:57:30 GMT
- Title: Realization of universal nonadiabatic holonomic quantum gates in trapped ion system
- Authors: Yong-Sen Chen, Jing Gao, Li-Na Ji,
- Abstract summary: We set out from the simplest and most fundamental Jaynes-Cummings model of ion trap system to implement single-qubit logical operations.<n>We take advantage of the interaction of two ions with a pair of laser pulses to implement two-qubit logical operations.
- Score: 5.92470368943469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The implementation of holonomic quantum computation is meaningful. We can effectively resist local and collective noise in the process of physical implementation by using the advantage of non-Abelian geometric phase. In this paper, we set out from the simplest and most fundamental Jaynes-Cummings model of ion trap system to implement single-qubit logical operations, and taking advantage of the interaction of two ions with a pair of laser pulses to implement two-qubit logical operations, respectively. Compared with the previous proposal, the whole process of our proposal are in tunable way and the universal holonomic quantum qubit gates can be made robust to systematic error and decay which pushes the gate fidelities in the presence of decoherence and systematic error to well high level. Thus our scheme affords an experimentally feasible and simple way to make realizing the robust nonadiabatic holonomic quantum computation.
Related papers
- Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Robust Nonadiabatic Holonomic Quantum Gates on Decoherence-Protected
Qubits [4.18804572788063]
We propose a scheme for quantum manipulation by combining the geometric phase approach with the dynamical correction technique.
Our scheme is implemented on the superconducting circuits, which also simplifies previous implementations.
arXiv Detail & Related papers (2021-10-06T14:39:52Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Universal quantum computation with symmetric qubit clusters coupled to
an environment [0.3670422696827526]
We propose a scalable scheme for universal quantum computation where cores play the role of quantum-computational transistors, quansistors.
We include quantum errors as a main source of decoherence, and show that symmetry makes logical operations particularly resilient to untimely anisotropic qubit rotations.
Many of our results can be generalized to higher-level omega-rotation-invariant systems, or adapted to clusters with other symmetries.
arXiv Detail & Related papers (2021-06-01T19:59:41Z) - Experimental implementation of universal holonomic quantum computation
on solid-state spins with optimal control [12.170408456188934]
We experimentally implement nonadiabatic holonomic quantum computation with solid spins in diamond at room-temperature.
Compared with previous geometric methods, the fidelities of a universal set of holonomic single-qubit and two-qubit quantum logic gates are improved.
This work makes an important step towards fault-tolerant scalable geometric quantum computation in realistic systems.
arXiv Detail & Related papers (2021-02-18T09:02:02Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates\\ with Optimal Control in a Trapped Ion [38.217839102257365]
We experimentally demonstrate nonadiabatic holonomic single qubit quantum gates with optimal control in a trapped Yb ion.
Compared with corresponding previous geometric gates and conventional dynamic gates, the superiority of our scheme is that it is more robust against control amplitude errors.
arXiv Detail & Related papers (2020-06-08T14:06:06Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.