Minimally Supervised Hierarchical Domain Intent Learning for CRS
- URL: http://arxiv.org/abs/2505.02209v1
- Date: Sun, 04 May 2025 18:12:54 GMT
- Title: Minimally Supervised Hierarchical Domain Intent Learning for CRS
- Authors: Safikureshi Mondal, Subhasis Dasgupta, Amarnath Gupta,
- Abstract summary: We propose an efficient solution for constructing a dynamic hierarchical structure that minimizes the number of user utterances required to achieve adequate domain knowledge coverage.<n>We apply our approach to a curated subset of 44,000 questions from the business food domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Modeling domain intent within an evolving domain structure presents a significant challenge for domain-specific conversational recommendation systems (CRS). The conventional approach involves training an intent model using utterance-intent pairs. However, as new intents and patterns emerge, the model must be continuously updated while preserving existing relationships and maintaining efficient retrieval. This process leads to substantial growth in utterance-intent pairs, making manual labeling increasingly costly and impractical. In this paper, we propose an efficient solution for constructing a dynamic hierarchical structure that minimizes the number of user utterances required to achieve adequate domain knowledge coverage. To this end, we introduce a neural network-based attention-driven hierarchical clustering algorithm designed to optimize intent grouping using minimal data. The proposed method builds upon and integrates concepts from two existing flat clustering algorithms DEC and NAM, both of which utilize neural attention mechanisms. We apply our approach to a curated subset of 44,000 questions from the business food domain. Experimental results demonstrate that constructing the hierarchy using a stratified sampling strategy significantly reduces the number of questions needed to represent the evolving intent structure. Our findings indicate that this approach enables efficient coverage of dynamic domain knowledge without frequent retraining, thereby enhancing scalability and adaptability in domain-specific CSRs.
Related papers
- Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
We introduce neural network reprogrammability as a unifying framework for model adaptation.<n>We present a taxonomy that categorizes such information manipulation approaches across four key dimensions.<n>We also analyze remaining technical challenges and ethical considerations.
arXiv Detail & Related papers (2025-06-05T05:42:27Z) - Goal Recognition using Actor-Critic Optimization [12.842382984993632]
Deep Recognition using Actor-Critic Optimization (DRACO) is a novel approach based on deep reinforcement learning.<n>DRACO is the first goal recognition algorithm that learns a set of policy networks from unstructured data and uses them for inference.<n>It achieves state-of-the-art performance for goal recognition in discrete settings while not using the structured inputs used by existing approaches.
arXiv Detail & Related papers (2024-12-31T16:44:20Z) - A Structural-Clustering Based Active Learning for Graph Neural Networks [16.85038790429607]
We propose the Structural-Clustering PageRank method for improved Active learning (SPA) specifically designed for graph-structured data.
SPA integrates community detection using the SCAN algorithm with the PageRank scoring method for efficient and informative sample selection.
arXiv Detail & Related papers (2023-12-07T14:04:38Z) - Towards Lightweight Cross-domain Sequential Recommendation via External
Attention-enhanced Graph Convolution Network [7.1102362215550725]
Cross-domain Sequential Recommendation (CSR) depicts the evolution of behavior patterns for overlapped users by modeling their interactions from multiple domains.
We introduce a lightweight external attention-enhanced GCN-based framework to solve the above challenges, namely LEA-GCN.
To further alleviate the framework structure and aggregate the user-specific sequential pattern, we devise a novel dual-channel External Attention (EA) component.
arXiv Detail & Related papers (2023-02-07T03:06:29Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
In this paper, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task.
The presented methodology directly improves a convolutional neural network (CNN) by enforcing the input image structure preservation through auto-encoders.
To validate the presented methodology, a simple CNN and various implementations of famous networks are extended via the SIRe strategy and extensively tested on the CIFAR100 dataset.
arXiv Detail & Related papers (2021-10-06T13:54:49Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
Intent classification is a major task in spoken language understanding (SLU)
Recent works have shown that using extra data and labels can improve the OOD detection performance.
This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection.
arXiv Detail & Related papers (2021-06-28T08:27:38Z) - Hierarchical Modeling for Out-of-Scope Domain and Intent Classification [55.23920796595698]
This paper focuses on out-of-scope intent classification in dialog systems.
We propose a hierarchical multi-task learning approach based on a joint model to classify domain and intent simultaneously.
Experiments show that the model outperforms existing methods in terms of accuracy, out-of-scope recall and F1.
arXiv Detail & Related papers (2021-04-30T06:38:23Z) - Modeling long-term interactions to enhance action recognition [81.09859029964323]
We propose a new approach to under-stand actions in egocentric videos that exploits the semantics of object interactions at both frame and temporal levels.
We use a region-based approach that takes as input a primary region roughly corresponding to the user hands and a set of secondary regions potentially corresponding to the interacting objects.
The proposed approach outperforms the state-of-the-art in terms of action recognition on standard benchmarks.
arXiv Detail & Related papers (2021-04-23T10:08:15Z) - Context Decoupling Augmentation for Weakly Supervised Semantic
Segmentation [53.49821324597837]
Weakly supervised semantic segmentation is a challenging problem that has been deeply studied in recent years.
We present a Context Decoupling Augmentation ( CDA) method to change the inherent context in which the objects appear.
To validate the effectiveness of the proposed method, extensive experiments on PASCAL VOC 2012 dataset with several alternative network architectures demonstrate that CDA can boost various popular WSSS methods to the new state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-03-02T15:05:09Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
We propose a method to automatically find a compact and problem-specific network for graph convolutional networks in a progressive manner.
Experimental results on two datasets for skeleton-based human action recognition indicate that the proposed method has competitive or even better classification performance.
arXiv Detail & Related papers (2020-11-11T09:57:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.