Efficient Continual Learning in Keyword Spotting using Binary Neural Networks
- URL: http://arxiv.org/abs/2505.02469v1
- Date: Mon, 05 May 2025 08:54:19 GMT
- Title: Efficient Continual Learning in Keyword Spotting using Binary Neural Networks
- Authors: Quynh Nguyen-Phuong Vu, Luciano Sebastian Martinez-Rau, Yuxuan Zhang, Nho-Duc Tran, Bengt Oelmann, Michele Magno, Sebastian Bader,
- Abstract summary: Keywords spotting (KWS) is an essential function that enables interaction with ubiquitous smart devices.<n>In resource-limited devices, KWS models are often static and can thus not adapt to new scenarios, such as added keywords.<n>We propose a Continual Learning (CL) approach for KWS built on Binary Neural Networks (BNNs)
- Score: 6.1901330413958355
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Keyword spotting (KWS) is an essential function that enables interaction with ubiquitous smart devices. However, in resource-limited devices, KWS models are often static and can thus not adapt to new scenarios, such as added keywords. To overcome this problem, we propose a Continual Learning (CL) approach for KWS built on Binary Neural Networks (BNNs). The framework leverages the reduced computation and memory requirements of BNNs while incorporating techniques that enable the seamless integration of new keywords over time. This study evaluates seven CL techniques on a 16-class use case, reporting an accuracy exceeding 95% for a single additional keyword and up to 86% for four additional classes. Sensitivity to the amount of training samples in the CL phase, and differences in computational complexities are being evaluated. These evaluations demonstrate that batch-based algorithms are more sensitive to the CL dataset size, and that differences between the computational complexities are insignificant. These findings highlight the potential of developing an effective and computationally efficient technique for continuously integrating new keywords in KWS applications that is compatible with resource-constrained devices.
Related papers
- Decentralised Resource Sharing in TinyML: Wireless Bilayer Gossip Parallel SGD for Collaborative Learning [2.6913398550088483]
This paper proposes a novel framework, bilayer Gossip Decentralised Parallel Descent (GDD)<n>GDD addresses intermittent connectivity, limited communication range, and dynamic network topologies.<n>We evaluate the framework's performance against the Centralised Federated Learning (CFL) baseline.
arXiv Detail & Related papers (2025-01-08T20:14:07Z) - Hyperparameters in Continual Learning: A Reality Check [53.30082523545212]
Continual learning (CL) aims to train a model on a sequence of tasks while balancing the trade-off between plasticity (learning new tasks) and stability (retaining prior knowledge)
arXiv Detail & Related papers (2024-03-14T03:13:01Z) - Enabling On-device Continual Learning with Binary Neural Networks [3.180732240499359]
We propose a solution that combines recent advancements in the field of Continual Learning (CL) and Binary Neural Networks (BNNs)
Specifically, our approach leverages binary latent replay activations and a novel quantization scheme that significantly reduces the number of bits required for gradient computation.
arXiv Detail & Related papers (2024-01-18T11:57:05Z) - On-Device Learning with Binary Neural Networks [2.7040098749051635]
We propose a CL solution that embraces the recent advancements in CL field and the efficiency of the Binary Neural Networks (BNN)
The choice of a binary network as backbone is essential to meet the constraints of low power devices.
arXiv Detail & Related papers (2023-08-29T13:48:35Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to
Real-Network Performance [54.214426436283134]
Deep neural networks, such as the Deep-FSMN, have been widely studied for keyword spotting (KWS) applications.
We present a strong yet efficient binary neural network for KWS, namely BiFSMNv2, pushing it to the real-network accuracy performance.
We highlight that benefiting from the compact architecture and optimized hardware kernel, BiFSMNv2 can achieve an impressive 25.1x speedup and 20.2x storage-saving on edge hardware.
arXiv Detail & Related papers (2022-11-13T18:31:45Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Low-bit Shift Network for End-to-End Spoken Language Understanding [7.851607739211987]
We propose the use of power-of-two quantization, which quantizes continuous parameters into low-bit power-of-two values.
This reduces computational complexity by removing expensive multiplication operations and with the use of low-bit weights.
arXiv Detail & Related papers (2022-07-15T14:34:22Z) - A New Clustering-Based Technique for the Acceleration of Deep
Convolutional Networks [2.7393821783237184]
Model Compression and Acceleration (MCA) techniques are used to transform large pre-trained networks into smaller models.
We propose a clustering-based approach that is able to increase the number of employed centroids/representatives.
This is achieved by imposing a special structure to the employed representatives, which is enabled by the particularities of the problem at hand.
arXiv Detail & Related papers (2021-07-19T18:22:07Z) - RethinkCWS: Is Chinese Word Segmentation a Solved Task? [81.11161697133095]
The performance of the Chinese Word (CWS) systems has gradually reached a plateau with the rapid development of deep neural networks.
In this paper, we take stock of what we have achieved and rethink what's left in the CWS task.
arXiv Detail & Related papers (2020-11-13T11:07:08Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
We evaluate the effectiveness of continual learning methods for processing sequential data with recurrent neural networks (RNNs)
We shed light on the particularities that arise when applying weight-importance methods, such as elastic weight consolidation, to RNNs.
We show that the performance of weight-importance methods is not directly affected by the length of the processed sequences, but rather by high working memory requirements.
arXiv Detail & Related papers (2020-06-22T10:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.