Less is More: Efficient Weight Farcasting with 1-Layer Neural Network
- URL: http://arxiv.org/abs/2505.02714v1
- Date: Mon, 05 May 2025 15:10:20 GMT
- Title: Less is More: Efficient Weight Farcasting with 1-Layer Neural Network
- Authors: Xiao Shou, Debarun Bhattacharjya, Yanna Ding, Chen Zhao, Rui Li, Jianxi Gao,
- Abstract summary: We introduce a novel framework which diverges from conventional approaches by leveraging long-term time series forecasting techniques.<n>Our method capitalizes solely on initial and final weight values, offering a streamlined alternative for complex model architectures.<n> Empirical evaluations conducted on synthetic weight sequences and real-world deep learning architectures, including the prominent large language model DistilBERT, demonstrate the superiority of our method.
- Score: 18.765677644342098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Addressing the computational challenges inherent in training large-scale deep neural networks remains a critical endeavor in contemporary machine learning research. While previous efforts have focused on enhancing training efficiency through techniques such as gradient descent with momentum, learning rate scheduling, and weight regularization, the demand for further innovation continues to burgeon as model sizes keep expanding. In this study, we introduce a novel framework which diverges from conventional approaches by leveraging long-term time series forecasting techniques. Our method capitalizes solely on initial and final weight values, offering a streamlined alternative for complex model architectures. We also introduce a novel regularizer that is tailored to enhance the forecasting performance of our approach. Empirical evaluations conducted on synthetic weight sequences and real-world deep learning architectures, including the prominent large language model DistilBERT, demonstrate the superiority of our method in terms of forecasting accuracy and computational efficiency. Notably, our framework showcases improved performance while requiring minimal additional computational overhead, thus presenting a promising avenue for accelerating the training process across diverse tasks and architectures.
Related papers
- An Overview of Low-Rank Structures in the Training and Adaptation of Large Models [52.67110072923365]
Recent research has uncovered a widespread phenomenon in deep networks: the emergence of low-rank structures.<n>These implicit low-dimensional patterns provide valuable insights for improving the efficiency of training and fine-tuning large-scale models.<n>We present a comprehensive review of advances in exploiting low-rank structures for deep learning and shed light on their mathematical foundations.
arXiv Detail & Related papers (2025-03-25T17:26:09Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Advancing Neural Network Performance through Emergence-Promoting Initialization Scheme [0.0]
Emergence in machine learning refers to the spontaneous appearance of capabilities that arise from the scale and structure of training data.<n>We introduce a novel yet straightforward neural network initialization scheme that aims at achieving greater potential for emergence.<n>We demonstrate substantial improvements in both model accuracy and training speed, with and without batch normalization.
arXiv Detail & Related papers (2024-07-26T18:56:47Z) - Continual Learning with Weight Interpolation [4.689826327213979]
Continual learning requires models to adapt to new tasks while retaining knowledge from previous ones.
This paper proposes a novel approach to continual learning utilizing the weight consolidation method.
arXiv Detail & Related papers (2024-04-05T10:25:40Z) - Multiplicative update rules for accelerating deep learning training and
increasing robustness [69.90473612073767]
We propose an optimization framework that fits to a wide range of machine learning algorithms and enables one to apply alternative update rules.
We claim that the proposed framework accelerates training, while leading to more robust models in contrast to traditionally used additive update rule.
arXiv Detail & Related papers (2023-07-14T06:44:43Z) - Continual Learning Beyond a Single Model [28.130513524601145]
We show that employing ensemble models can be a simple yet effective method to improve continual performance.
We propose a computationally cheap algorithm with similar runtime to a single model yet enjoying the performance benefits of ensembles.
arXiv Detail & Related papers (2022-02-20T14:30:39Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - Top-KAST: Top-K Always Sparse Training [50.05611544535801]
We propose Top-KAST, a method that preserves constant sparsity throughout training.
We show that it performs comparably to or better than previous works when training models on the established ImageNet benchmark.
In addition to our ImageNet results, we also demonstrate our approach in the domain of language modeling.
arXiv Detail & Related papers (2021-06-07T11:13:05Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
Training deep neural networks using a large batch size has shown promising results and benefits many real-world applications.
In this paper, we propose a novel Complete Layer-wise Adaptive Rate Scaling (CLARS) algorithm for large-batch training.
Based on our analysis, we bridge the gap and illustrate the theoretical insights for three popular large-batch training techniques.
arXiv Detail & Related papers (2020-02-04T23:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.