Comparing classical and quantum conditional disclosure of secrets
- URL: http://arxiv.org/abs/2505.02939v2
- Date: Fri, 09 May 2025 23:29:03 GMT
- Title: Comparing classical and quantum conditional disclosure of secrets
- Authors: Uma Girish, Alex May, Leo Orshansky, Chris Waddell,
- Abstract summary: conditional disclosure of secrets (CDS) setting is among the most basic primitives studied in cryptography.<n>We study the differences between quantum and classical CDS, with the aims of clarifying the power of quantum resources in cryptography.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The conditional disclosure of secrets (CDS) setting is among the most basic primitives studied in information-theoretic cryptography. Motivated by a connection to non-local quantum computation and position-based cryptography, CDS with quantum resources has recently been considered. Here, we study the differences between quantum and classical CDS, with the aims of clarifying the power of quantum resources in information-theoretic cryptography. We establish the following results: 1) For perfectly correct CDS, we give a separation for a promise version of the not-equals function, showing a quantum upper bound of $O(\log n)$ and classical lower bound of $\Omega(n)$. 2) We prove a $\Omega(\log \mathsf{R}_{0,A\rightarrow B}(f)+\log \mathsf{R}_{0,B\rightarrow A}(f))$ lower bound on quantum CDS where $\mathsf{R}_{0,A\rightarrow B}(f)$ is the classical one-way communication complexity with perfect correctness. 3) We prove a lower bound on quantum CDS in terms of two round, public coin, two-prover interactive proofs. 4) We give a logarithmic upper bound for quantum CDS on forrelation, while the best known classical algorithm is linear. We interpret this as preliminary evidence that classical and quantum CDS are separated even with correctness and security error allowed. We also give a separation for classical and quantum private simultaneous message passing for a partial function, improving on an earlier relational separation. Our results use novel combinations of techniques from non-local quantum computation and communication complexity.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Linear gate bounds against natural functions for position-verification [0.0]
A quantum position-verification scheme attempts to verify the spatial location of a prover.<n>We consider two well-studied position-verification schemes known as $f$-routing and $f$-BB84.
arXiv Detail & Related papers (2024-02-28T19:00:10Z) - Rank lower bounds on non-local quantum computation [0.0]
A non-local quantum computation (NLQC) replaces an interaction between two quantum systems with a single round of communication and shared entanglement.<n>We study two classes of NLQC, $f$-routing and $f$-BB84, which are of relevance to classical information theoretic cryptography and quantum position-verification.
arXiv Detail & Related papers (2024-02-28T19:00:09Z) - A Cryptographic Perspective on the Verifiability of Quantum Advantage [5.857929080874288]
This paper investigates the verification of quantum advantage from a cryptographic perspective.
We establish a strong connection between the verifiability of quantum advantage and cryptographic and complexity primitives.
Our work shows that the quest for verifiable quantum advantages may lead to applications of quantum cryptography.
arXiv Detail & Related papers (2023-10-23T00:31:51Z) - Unbounded Quantum Advantage in Communication with Minimal Input Scaling [0.0]
We show an it unbounded quantum advantage in relation reconstruction without public coins.<n>We also highlight some applications of this task to semi-device-independent dimension witnessing and the detection of Mutually Unbiased Bases.
arXiv Detail & Related papers (2023-05-17T16:58:05Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation.
For some problems, the ability to perform adaptive measurements in a single shallow quantum circuit is more useful than the ability to perform many shallow quantum circuits without adaptive measurements.
arXiv Detail & Related papers (2022-10-12T17:54:02Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Probably approximately correct quantum source coding [0.0]
Holevo's and Nayak's bounds give an estimate of the amount of classical information that can be stored in a quantum state.
We show two novel applications in quantum learning theory and delegated quantum computation with a purely classical client.
arXiv Detail & Related papers (2021-12-13T17:57:30Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.