Robustly Invertible Nonlinear Dynamics and the BiLipREN: Contracting Neural Models with Contracting Inverses
- URL: http://arxiv.org/abs/2505.03069v1
- Date: Mon, 05 May 2025 23:27:52 GMT
- Title: Robustly Invertible Nonlinear Dynamics and the BiLipREN: Contracting Neural Models with Contracting Inverses
- Authors: Yurui Zhang, Ruigang Wang, Ian R. Manchester,
- Abstract summary: We study the invertibility of nonlinear dynamical systems from the perspective of contraction and incremental stability analysis.<n>We propose a new invertible recurrent neural model: the BiLipREN.
- Score: 2.0277446818410994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the invertibility of nonlinear dynamical systems from the perspective of contraction and incremental stability analysis and propose a new invertible recurrent neural model: the BiLipREN. In particular, we consider a nonlinear state space model to be robustly invertible if an inverse exists with a state space realisation, and both the forward model and its inverse are contracting, i.e. incrementally exponentially stable, and Lipschitz, i.e. have bounded incremental gain. This property of bi-Lipschitzness implies both robustness in the sense of sensitivity to input perturbations, as well as robust distinguishability of different inputs from their corresponding outputs, i.e. the inverse model robustly reconstructs the input sequence despite small perturbations to the initial conditions and measured output. Building on this foundation, we propose a parameterization of neural dynamic models: bi-Lipschitz recurrent equilibrium networks (biLipREN), which are robustly invertible by construction. Moreover, biLipRENs can be composed with orthogonal linear systems to construct more general bi-Lipschitz dynamic models, e.g., a nonlinear analogue of minimum-phase/all-pass (inner/outer) factorization. We illustrate the utility of our proposed approach with numerical examples.
Related papers
- Sequential-Parallel Duality in Prefix Scannable Models [68.39855814099997]
Recent developments have given rise to various models, such as Gated Linear Attention (GLA) and Mamba.<n>This raises a natural question: can we characterize the full class of neural sequence models that support near-constant-time parallel evaluation and linear-time, constant-space sequential inference?
arXiv Detail & Related papers (2025-06-12T17:32:02Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.<n>We train the model using maximum likelihood estimation with Markov chain Monte Carlo.<n> Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
We present a unifying perspective on recent results on ridge regression.<n>We use the basic tools of random matrix theory and free probability, aimed at readers with backgrounds in physics and deep learning.<n>Our results extend and provide a unifying perspective on earlier models of scaling laws.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Layered Models can "Automatically" Regularize and Discover Low-Dimensional Structures via Feature Learning [6.109362130047454]
We study a two-layer nonparametric regression model where the input undergoes a linear transformation followed by a nonlinear mapping to predict the output.<n>We show that the two-layer model can "automatically" induce regularization and facilitate feature learning.
arXiv Detail & Related papers (2023-10-18T06:15:35Z) - Non Commutative Convolutional Signal Models in Neural Networks:
Stability to Small Deformations [111.27636893711055]
We study the filtering and stability properties of non commutative convolutional filters.
Our results have direct implications for group neural networks, multigraph neural networks and quaternion neural networks.
arXiv Detail & Related papers (2023-10-05T20:27:22Z) - Edge of stability echo state networks [5.888495030452654]
Echo State Networks (ESNs) are time-series processing models working under the Echo State Property (ESP) principle.
We introduce a new ESN architecture, called the Edge of Stability Echo State Network (ES$2$N)
arXiv Detail & Related papers (2023-08-05T15:49:25Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Second-order regression models exhibit progressive sharpening to the
edge of stability [30.92413051155244]
We show that for quadratic objectives in two dimensions, a second-order regression model exhibits progressive sharpening towards a value that differs slightly from the edge of stability.
In higher dimensions, the model generically shows similar behavior, even without the specific structure of a neural network.
arXiv Detail & Related papers (2022-10-10T17:21:20Z) - Learning and Inference in Sparse Coding Models with Langevin Dynamics [3.0600309122672726]
We describe a system capable of inference and learning in a probabilistic latent variable model.
We demonstrate this idea for a sparse coding model by deriving a continuous-time equation for inferring its latent variables via Langevin dynamics.
We show that Langevin dynamics lead to an efficient procedure for sampling from the posterior distribution in the 'L0 sparse' regime, where latent variables are encouraged to be set to zero as opposed to having a small L1 norm.
arXiv Detail & Related papers (2022-04-23T23:16:47Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
We study the generalization of non commutative convolutional neural networks.
We show that non commutative convolutional architectures can be stable to deformations on the space of operators.
arXiv Detail & Related papers (2021-08-23T04:22:58Z) - Towards Understanding Generalization via Decomposing Excess Risk
Dynamics [13.4379473119565]
We analyze the generalization dynamics to derive algorithm-dependent bounds, e.g., stability.
Inspired by the observation that neural networks show a slow convergence rate when fitting noise, we propose decomposing the excess risk dynamics.
Under the decomposition framework, the new bound accords better with the theoretical and empirical evidence compared to the stability-based bound and uniform convergence bound.
arXiv Detail & Related papers (2021-06-11T03:42:45Z) - Recurrent Equilibrium Networks: Flexible Dynamic Models with Guaranteed
Stability and Robustness [3.2872586139884623]
This paper introduces recurrent equilibrium networks (RENs) for applications in machine learning, system identification and control.
RENs are parameterized directly by quadratic vector in RN, i.e. stability and robustness are ensured without parameter constraints.
The paper also presents applications in data-driven nonlinear observer design and control with stability guarantees.
arXiv Detail & Related papers (2021-04-13T05:09:41Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Lipschitz Recurrent Neural Networks [100.72827570987992]
We show that our Lipschitz recurrent unit is more robust with respect to input and parameter perturbations as compared to other continuous-time RNNs.
Our experiments demonstrate that the Lipschitz RNN can outperform existing recurrent units on a range of benchmark tasks.
arXiv Detail & Related papers (2020-06-22T08:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.