CoGenAV: Versatile Audio-Visual Representation Learning via Contrastive-Generative Synchronization
- URL: http://arxiv.org/abs/2505.03186v2
- Date: Thu, 15 May 2025 07:21:04 GMT
- Title: CoGenAV: Versatile Audio-Visual Representation Learning via Contrastive-Generative Synchronization
- Authors: Detao Bai, Zhiheng Ma, Xihan Wei, Liefeng Bo,
- Abstract summary: CoGenAV is a powerful and data-efficient model designed to learn versatile audio-visual representations.<n>CoGenAV is trained by optimizing a dual objective derived from natural audio-visual synchrony, contrastive feature alignment and generative text prediction.<n>We showcase the effectiveness and versatility of the learned CoGenAV representations on multiple benchmarks.
- Score: 16.372875825530787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The inherent synchronization between a speaker's lip movements, voice, and the underlying linguistic content offers a rich source of information for improving speech processing tasks, especially in challenging conditions where traditional audio-only systems falter. We introduce CoGenAV, a powerful and data-efficient model designed to learn versatile audio-visual representations applicable across a wide range of speech and audio-visual tasks. CoGenAV is trained by optimizing a dual objective derived from natural audio-visual synchrony, contrastive feature alignment and generative text prediction, using only 223 hours of labeled data from the LRS2 dataset. This contrastive-generative synchronization strategy effectively captures fundamental cross-modal correlations. We showcase the effectiveness and versatility of the learned CoGenAV representations on multiple benchmarks. When utilized for Audio-Visual Speech Recognition (AVSR) on LRS2, these representations contribute to achieving a state-of-the-art Word Error Rate (WER) of 1.27. They also enable strong performance in Visual Speech Recognition (VSR) with a WER of 20.5 on LRS2, and significantly improve performance in noisy environments by over 70%. Furthermore, CoGenAV representations benefit speech reconstruction tasks, boosting performance in Speech Enhancement and Separation, and achieve competitive results in audio-visual synchronization tasks like Active Speaker Detection (ASD). Our model will be open-sourced to facilitate further development and collaboration within both academia and industry.
Related papers
- Towards Robust Overlapping Speech Detection: A Speaker-Aware Progressive Approach Using WavLM [53.17360668423001]
Overlapping Speech Detection (OSD) aims to identify regions where multiple speakers overlap in a conversation.<n>This work proposes a speaker-aware progressive OSD model that leverages a progressive training strategy to enhance the correlation between subtasks.<n> Experimental results show that the proposed method achieves state-of-the-art performance, with an F1 score of 82.76% on the AMI test set.
arXiv Detail & Related papers (2025-05-29T07:47:48Z) - WavLLM: Towards Robust and Adaptive Speech Large Language Model [93.0773293897888]
We introduce WavLLM, a robust and adaptive speech large language model with dual encoders, and a prompt-aware LoRA weight adapter.
We validate the proposed model on universal speech benchmarks including tasks such as ASR, ST, SV, ER, and also apply it to specialized datasets like Gaokao English listening comprehension set for SQA, and speech Chain-of-Thought (CoT) evaluation set.
arXiv Detail & Related papers (2024-03-31T12:01:32Z) - Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
We present a multilingual Audio-Visual Speech Recognition model incorporating several enhancements to improve performance and audio noise robustness.
We increase the amount of audio-visual training data for six distinct languages, generating automatic transcriptions of unlabelled multilingual datasets.
Our proposed model achieves new state-of-the-art performance on the LRS3 dataset, reaching WER of 0.8%.
arXiv Detail & Related papers (2024-03-14T01:16:32Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Lip2Vec: Efficient and Robust Visual Speech Recognition via
Latent-to-Latent Visual to Audio Representation Mapping [4.271091833712731]
We propose a simple approach, named Lip2Vec that is based on learning a prior model.
The proposed model compares favorably with fully-supervised learning methods on the LRS3 dataset achieving 26 WER.
We believe that reprogramming the VSR as an ASR task narrows the performance gap between the two and paves the way for more flexible formulations of lip reading.
arXiv Detail & Related papers (2023-08-11T12:59:02Z) - Simultaneous or Sequential Training? How Speech Representations
Cooperate in a Multi-Task Self-Supervised Learning System [12.704529528199064]
Recent work combined self-supervised learning (SSL) and visually grounded speech (VGS) processing mechanisms for representation learning.
We study the joint optimization of wav2vec 2.0-based SSL and transformer-based VGS as a multi-task learning system.
arXiv Detail & Related papers (2023-06-05T15:35:19Z) - Cross-modal Audio-visual Co-learning for Text-independent Speaker
Verification [55.624946113550195]
This paper proposes a cross-modal speech co-learning paradigm.
Two cross-modal boosters are introduced based on an audio-visual pseudo-siamese structure to learn the modality-transformed correlation.
Experimental results on the LRSLip3, GridLip, LomGridLip, and VoxLip datasets demonstrate that our proposed method achieves 60% and 20% average relative performance improvement.
arXiv Detail & Related papers (2023-02-22T10:06:37Z) - AV-data2vec: Self-supervised Learning of Audio-Visual Speech
Representations with Contextualized Target Representations [88.30635799280923]
We introduce AV-data2vec which builds audio-visual representations based on predicting contextualized representations.
Results on LRS3 show that AV-data2vec consistently outperforms existing methods with the same amount of data and model size.
arXiv Detail & Related papers (2023-02-10T02:55:52Z) - Multiresolution and Multimodal Speech Recognition with Transformers [22.995102995029576]
This paper presents an audio visual automatic speech recognition (AV-ASR) system using a Transformer-based architecture.
We focus on the scene context provided by the visual information, to ground the ASR.
Our results are comparable to state-of-the-art Listen, Attend and Spell-based architectures.
arXiv Detail & Related papers (2020-04-29T09:32:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.