GUAVA: Generalizable Upper Body 3D Gaussian Avatar
- URL: http://arxiv.org/abs/2505.03351v1
- Date: Tue, 06 May 2025 09:19:16 GMT
- Title: GUAVA: Generalizable Upper Body 3D Gaussian Avatar
- Authors: Dongbin Zhang, Yunfei Liu, Lijian Lin, Ye Zhu, Yang Li, Minghan Qin, Yu Li, Haoqian Wang,
- Abstract summary: 3D human avatar reconstruction typically requires multi-view or monocular videos and training on individual IDs.<n>We first introduce an expressive human model (EHM) to enhance facial expression capabilities.<n>We propose GUAVA, the first framework for fast animatable upper-body 3D Gaussian avatar reconstruction.
- Score: 32.476282286315055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing a high-quality, animatable 3D human avatar with expressive facial and hand motions from a single image has gained significant attention due to its broad application potential. 3D human avatar reconstruction typically requires multi-view or monocular videos and training on individual IDs, which is both complex and time-consuming. Furthermore, limited by SMPLX's expressiveness, these methods often focus on body motion but struggle with facial expressions. To address these challenges, we first introduce an expressive human model (EHM) to enhance facial expression capabilities and develop an accurate tracking method. Based on this template model, we propose GUAVA, the first framework for fast animatable upper-body 3D Gaussian avatar reconstruction. We leverage inverse texture mapping and projection sampling techniques to infer Ubody (upper-body) Gaussians from a single image. The rendered images are refined through a neural refiner. Experimental results demonstrate that GUAVA significantly outperforms previous methods in rendering quality and offers significant speed improvements, with reconstruction times in the sub-second range (0.1s), and supports real-time animation and rendering.
Related papers
- Parametric Gaussian Human Model: Generalizable Prior for Efficient and Realistic Human Avatar Modeling [32.480049588166544]
Photo and animatable human avatars are a key enabler for virtual/augmented reality, telepresence, and digital entertainment.<n>We present the Parametric Gaussian Human Model (PGHM), a generalizable and efficient framework that integrates human priors into 3DGS.<n>Experiments show that PGHM is significantly more efficient than optimization-from-scratch methods, requiring only approximately 20 minutes per subject to produce avatars with comparable visual quality.
arXiv Detail & Related papers (2025-06-07T03:53:30Z) - AdaHuman: Animatable Detailed 3D Human Generation with Compositional Multiview Diffusion [56.12859795754579]
AdaHuman is a novel framework that generates high-fidelity animatable 3D avatars from a single in-the-wild image.<n>AdaHuman incorporates two key innovations: a pose-conditioned 3D joint diffusion model and a compositional 3DGS refinement module.
arXiv Detail & Related papers (2025-05-30T17:59:54Z) - EVA: Expressive Virtual Avatars from Multi-view Videos [51.33851869426057]
We introduce Expressive Virtual Avatars (EVA), an actor-specific, fully controllable, and expressive human avatar framework.<n>EVA achieves high-fidelity, lifelike renderings in real time while enabling independent control of facial expressions, body movements, and hand gestures.<n>This work represents a significant advancement towards fully drivable digital human models.
arXiv Detail & Related papers (2025-05-21T11:22:52Z) - TeGA: Texture Space Gaussian Avatars for High-Resolution Dynamic Head Modeling [52.87836237427514]
Photoreal avatars are seen as a key component in emerging applications in telepresence, extended reality, and entertainment.<n>We present a new high-detail 3D head avatar model that improves upon the state of the art.
arXiv Detail & Related papers (2025-05-08T22:10:27Z) - Better Together: Unified Motion Capture and 3D Avatar Reconstruction [6.329917162442801]
We present a method that simultaneously solves the human pose estimation problem while reconstructing a 3D human avatar from multi-view videos.<n>We introduce a novel animatable avatar with 3D Gaussians rigged on a personalized mesh.<n>We first evaluate our method on highly challenging yoga poses and demonstrate state-of-the-art accuracy on multi-view human pose estimation.
arXiv Detail & Related papers (2025-03-12T11:39:43Z) - WonderHuman: Hallucinating Unseen Parts in Dynamic 3D Human Reconstruction [51.22641018932625]
We present WonderHuman to reconstruct dynamic human avatars from a monocular video for high-fidelity novel view synthesis.<n>Our method achieves SOTA performance in producing photorealistic renderings from the given monocular video.
arXiv Detail & Related papers (2025-02-03T04:43:41Z) - AniGS: Animatable Gaussian Avatar from a Single Image with Inconsistent Gaussian Reconstruction [26.82525451095629]
We propose a robust method for 3D reconstruction of inconsistent images, enabling real-time rendering during inference.<n>We recast the reconstruction problem as a 4D task and introduce an efficient 3D modeling approach using 4D Gaussian Splatting.<n>Experiments demonstrate that our method achieves photorealistic, real-time animation of 3D human avatars from in-the-wild images.
arXiv Detail & Related papers (2024-12-03T18:55:39Z) - Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - GVA: Reconstructing Vivid 3D Gaussian Avatars from Monocular Videos [56.40776739573832]
We present a novel method that facilitates the creation of vivid 3D Gaussian avatars from monocular video inputs (GVA)
Our innovation lies in addressing the intricate challenges of delivering high-fidelity human body reconstructions.
We introduce a pose refinement technique to improve hand and foot pose accuracy by aligning normal maps and silhouettes.
arXiv Detail & Related papers (2024-02-26T14:40:15Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
We propose a fully explicit approach to construct a digital avatar from as little as a single monocular sequence.
ParDy-Human constitutes an explicit model for realistic dynamic human avatars which requires significantly fewer training views and images.
Our avatars learning is free of additional annotations such as Splat masks and can be trained with variable backgrounds while inferring full-resolution images efficiently even on consumer hardware.
arXiv Detail & Related papers (2023-12-22T20:56:46Z) - GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians [51.46168990249278]
We present an efficient approach to creating realistic human avatars with dynamic 3D appearances from a single video.
GustafAvatar is validated on both the public dataset and our collected dataset.
arXiv Detail & Related papers (2023-12-04T18:55:45Z) - GAN-Avatar: Controllable Personalized GAN-based Human Head Avatar [48.21353924040671]
We propose to learn person-specific animatable avatars from images without assuming to have access to precise facial expression tracking.
We learn a mapping from 3DMM facial expression parameters to the latent space of the generative model.
With this scheme, we decouple 3D appearance reconstruction and animation control to achieve high fidelity in image synthesis.
arXiv Detail & Related papers (2023-11-22T19:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.