Interpretable Zero-shot Learning with Infinite Class Concepts
- URL: http://arxiv.org/abs/2505.03361v1
- Date: Tue, 06 May 2025 09:30:30 GMT
- Title: Interpretable Zero-shot Learning with Infinite Class Concepts
- Authors: Zihan Ye, Shreyank N Gowda, Shiming Chen, Yaochu Jin, Kaizhu Huang, Xiaobo Jin,
- Abstract summary: This paper redefines class semantics in Zero-shot learning (ZSL) with a focus on transferability and discriminability.<n>We introduce a novel framework called Zero-shot Learning with Infinite Class Concepts (InfZSL)
- Score: 34.74107784017915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot learning (ZSL) aims to recognize unseen classes by aligning images with intermediate class semantics, like human-annotated concepts or class definitions. An emerging alternative leverages Large-scale Language Models (LLMs) to automatically generate class documents. However, these methods often face challenges with transparency in the classification process and may suffer from the notorious hallucination problem in LLMs, resulting in non-visual class semantics. This paper redefines class semantics in ZSL with a focus on transferability and discriminability, introducing a novel framework called Zero-shot Learning with Infinite Class Concepts (InfZSL). Our approach leverages the powerful capabilities of LLMs to dynamically generate an unlimited array of phrase-level class concepts. To address the hallucination challenge, we introduce an entropy-based scoring process that incorporates a ``goodness" concept selection mechanism, ensuring that only the most transferable and discriminative concepts are selected. Our InfZSL framework not only demonstrates significant improvements on three popular benchmark datasets but also generates highly interpretable, image-grounded concepts. Code will be released upon acceptance.
Related papers
- Vocabulary-free Fine-grained Visual Recognition via Enriched Contextually Grounded Vision-Language Model [52.01031460230826]
Traditional approaches rely heavily on fixed vocabularies and closed-set classification paradigms.<n>Recent research has demonstrated that combining large language models with vision-language models (VLMs) makes open-set recognition possible.<n>We propose our training-free method, Enriched-FineR, which demonstrates state-of-the-art results in fine-grained visual recognition.
arXiv Detail & Related papers (2025-07-30T20:06:01Z) - Attribute-formed Class-specific Concept Space: Endowing Language Bottleneck Model with Better Interpretability and Scalability [54.420663939897686]
We propose the Attribute-formed Language Bottleneck Model (ALBM) to achieve interpretable image recognition.<n>ALBM organizes concepts in the attribute-formed class-specific space, where concepts are descriptions of specific attributes for specific classes.<n>To further improve interpretability, we propose Visual Attribute Prompt Learning (VAPL) to extract visual features on fine-grained attributes.
arXiv Detail & Related papers (2025-03-26T07:59:04Z) - Discriminative Image Generation with Diffusion Models for Zero-Shot Learning [53.44301001173801]
We present DIG-ZSL, a novel Discriminative Image Generation framework for Zero-Shot Learning.<n>We learn a discriminative class token (DCT) for each unseen class under the guidance of a pre-trained category discrimination model (CDM)<n>In this paper, the extensive experiments and visualizations on four datasets show that our DIG-ZSL: (1) generates diverse and high-quality images, (2) outperforms previous state-of-the-art nonhuman-annotated semantic prototype-based methods by a large margin, and (3) achieves comparable or better performance than baselines that leverage human-annot
arXiv Detail & Related papers (2024-12-23T02:18:54Z) - Data-Free Generalized Zero-Shot Learning [45.86614536578522]
We propose a generic framework for data-free zero-shot learning (DFZSL)
Our framework has been evaluated on five commonly used benchmarks for generalized ZSL, as well as 11 benchmarks for the base-to-new ZSL.
arXiv Detail & Related papers (2024-01-28T13:26:47Z) - Towards Realistic Zero-Shot Classification via Self Structural Semantic
Alignment [53.2701026843921]
Large-scale pre-trained Vision Language Models (VLMs) have proven effective for zero-shot classification.
In this paper, we aim at a more challenging setting, Realistic Zero-Shot Classification, which assumes no annotation but instead a broad vocabulary.
We propose the Self Structural Semantic Alignment (S3A) framework, which extracts structural semantic information from unlabeled data while simultaneously self-learning.
arXiv Detail & Related papers (2023-08-24T17:56:46Z) - Waffling around for Performance: Visual Classification with Random Words
and Broad Concepts [121.60918966567657]
WaffleCLIP is a framework for zero-shot visual classification which simply replaces LLM-generated descriptors with random character and word descriptors.
We conduct an extensive experimental study on the impact and shortcomings of additional semantics introduced with LLM-generated descriptors.
arXiv Detail & Related papers (2023-06-12T17:59:48Z) - Prompting Language-Informed Distribution for Compositional Zero-Shot Learning [73.49852821602057]
Compositional zero-shot learning (CZSL) task aims to recognize unseen compositional visual concepts.
We propose a model by prompting the language-informed distribution, aka., PLID, for the task.
Experimental results on MIT-States, UT-Zappos, and C-GQA datasets show the superior performance of the PLID to the prior arts.
arXiv Detail & Related papers (2023-05-23T18:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.