Modality-Guided Dynamic Graph Fusion and Temporal Diffusion for Self-Supervised RGB-T Tracking
- URL: http://arxiv.org/abs/2505.03507v1
- Date: Tue, 06 May 2025 13:15:34 GMT
- Title: Modality-Guided Dynamic Graph Fusion and Temporal Diffusion for Self-Supervised RGB-T Tracking
- Authors: Shenglan Li, Rui Yao, Yong Zhou, Hancheng Zhu, Kunyang Sun, Bing Liu, Zhiwen Shao, Jiaqi Zhao,
- Abstract summary: We propose GDSTrack, a novel approach to self-supervised RGB-T tracking.<n>GDSTrack fuses the modalities of neighboring frames, treats them as distractor noise, and leverages the denoising capability of a generative model.<n>Experiments conducted on four public RGB-T tracking datasets demonstrate that GDSTrack outperforms the existing state-of-the-art methods.
- Score: 30.292364744578226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To reduce the reliance on large-scale annotations, self-supervised RGB-T tracking approaches have garnered significant attention. However, the omission of the object region by erroneous pseudo-label or the introduction of background noise affects the efficiency of modality fusion, while pseudo-label noise triggered by similar object noise can further affect the tracking performance. In this paper, we propose GDSTrack, a novel approach that introduces dynamic graph fusion and temporal diffusion to address the above challenges in self-supervised RGB-T tracking. GDSTrack dynamically fuses the modalities of neighboring frames, treats them as distractor noise, and leverages the denoising capability of a generative model. Specifically, by constructing an adjacency matrix via an Adjacency Matrix Generator (AMG), the proposed Modality-guided Dynamic Graph Fusion (MDGF) module uses a dynamic adjacency matrix to guide graph attention, focusing on and fusing the object's coherent regions. Temporal Graph-Informed Diffusion (TGID) models MDGF features from neighboring frames as interference, and thus improving robustness against similar-object noise. Extensive experiments conducted on four public RGB-T tracking datasets demonstrate that GDSTrack outperforms the existing state-of-the-art methods. The source code is available at https://github.com/LiShenglana/GDSTrack.
Related papers
- Automatically Identify and Rectify: Robust Deep Contrastive Multi-view Clustering in Noisy Scenarios [76.02688769599686]
We propose a novel multi-view clustering framework for the automatic identification and rectification of noisy data, termed AIRMVC.<n>Specifically, we reformulate noisy identification as an anomaly identification problem using GMM.<n>We then design a hybrid rectification strategy to mitigate the adverse effects of noisy data based on the identification results.
arXiv Detail & Related papers (2025-05-27T16:16:54Z) - Exploiting Multimodal Spatial-temporal Patterns for Video Object Tracking [53.33637391723555]
We propose a unified multimodal spatial-temporal tracking approach named STTrack.<n>In contrast to previous paradigms, we introduced a temporal state generator (TSG) that continuously generates a sequence of tokens containing multimodal temporal information.<n>These temporal information tokens are used to guide the localization of the target in the next time state, establish long-range contextual relationships between video frames, and capture the temporal trajectory of the target.
arXiv Detail & Related papers (2024-12-20T09:10:17Z) - ConsistencyTrack: A Robust Multi-Object Tracker with a Generation Strategy of Consistency Model [20.259334882471574]
Multi-object tracking (MOT) is a critical technology in computer vision, designed to detect multiple targets in video sequences and assign each target a unique ID per frame.
Existed MOT methods excel at accurately tracking multiple objects in real-time across various scenarios.
We propose a novel ConsistencyTrack, joint detection and tracking(JDT) framework that formulates detection and association as a denoising diffusion process on bounding boxes.
arXiv Detail & Related papers (2024-08-28T05:53:30Z) - DDN-SLAM: Real-time Dense Dynamic Neural Implicit SLAM [5.267859554944985]
We introduce DDN-SLAM, the first real-time dense dynamic neural implicit SLAM system integrating semantic features.
Compared to existing neural implicit SLAM systems, the tracking results on dynamic datasets indicate an average 90% improvement in Average Trajectory Error (ATE) accuracy.
arXiv Detail & Related papers (2024-01-03T05:42:17Z) - TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models [75.20168902300166]
We propose TrackDiffusion, a novel video generation framework affording fine-grained trajectory-conditioned motion control.
A pivotal component of TrackDiffusion is the instance enhancer, which explicitly ensures inter-frame consistency of multiple objects.
generated video sequences by our TrackDiffusion can be used as training data for visual perception models.
arXiv Detail & Related papers (2023-12-01T15:24:38Z) - DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
We propose DNMOT, an end-to-end trainable DeNoising Transformer for multiple object tracking.
Specifically, we augment the trajectory with noises during training and make our model learn the denoising process in an encoder-decoder architecture.
We conduct extensive experiments on the MOT17, MOT20, and DanceTrack datasets, and the experimental results show that our method outperforms previous state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2023-09-09T04:40:01Z) - Multi-Dimensional Refinement Graph Convolutional Network with Robust
Decouple Loss for Fine-Grained Skeleton-Based Action Recognition [19.031036881780107]
We propose a flexible attention block called Channel-Variable Spatial-Temporal Attention (CVSTA) to enhance the discriminative power of spatial-temporal joints.
Based on CVSTA, we construct a Multi-Dimensional Refinement Graph Convolutional Network (MDR-GCN), which can improve the discrimination among channel-, joint- and frame-level features.
Furthermore, we propose a Robust Decouple Loss (RDL), which significantly boosts the effect of the CVSTA and reduces the impact of noise.
arXiv Detail & Related papers (2023-06-27T09:23:36Z) - RGB-T Tracking Based on Mixed Attention [5.151994214135177]
RGB-T tracking involves the use of images from both visible and thermal modalities.
An RGB-T tracker based on mixed attention mechanism to achieve complementary fusion of modalities is proposed in this paper.
arXiv Detail & Related papers (2023-04-09T15:59:41Z) - Learning Dual-Fused Modality-Aware Representations for RGBD Tracking [67.14537242378988]
Compared with the traditional RGB object tracking, the addition of the depth modality can effectively solve the target and background interference.
Some existing RGBD trackers use the two modalities separately and thus some particularly useful shared information between them is ignored.
We propose a novel Dual-fused Modality-aware Tracker (termed DMTracker) which aims to learn informative and discriminative representations of the target objects for robust RGBD tracking.
arXiv Detail & Related papers (2022-11-06T07:59:07Z) - ProgressiveMotionSeg: Mutually Reinforced Framework for Event-Based
Motion Segmentation [101.19290845597918]
This paper presents a Motion Estimation (ME) module and an Event Denoising (ED) module jointly optimized in a mutually reinforced manner.
Taking temporal correlation as guidance, ED module calculates the confidence that each event belongs to real activity events, and transmits it to ME module to update energy function of motion segmentation for noise suppression.
arXiv Detail & Related papers (2022-03-22T13:40:26Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
We propose a new dynamic modality-aware filter generation module (named MFGNet) to boost the message communication between visible and thermal data.
We generate dynamic modality-aware filters with two independent networks. The visible and thermal filters will be used to conduct a dynamic convolutional operation on their corresponding input feature maps respectively.
To address issues caused by heavy occlusion, fast motion, and out-of-view, we propose to conduct a joint local and global search by exploiting a new direction-aware target-driven attention mechanism.
arXiv Detail & Related papers (2021-07-22T03:10:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.