Rational Retrieval Acts: Leveraging Pragmatic Reasoning to Improve Sparse Retrieval
- URL: http://arxiv.org/abs/2505.03676v1
- Date: Tue, 06 May 2025 16:21:10 GMT
- Title: Rational Retrieval Acts: Leveraging Pragmatic Reasoning to Improve Sparse Retrieval
- Authors: Arthur Satouf, Gabriel Ben Zenou, Benjamin Piwowarski, Habiboulaye Amadou Boubacar, Pablo Piantanida,
- Abstract summary: Current sparse neural information retrieval methods do not take into account the document collection and the complex interplay between different term weights when representing a single document.<n>We show how the Rational Speech Acts (RSA), a linguistics framework used to minimize the number of features to be communicated when identifying an object in a set, can be adapted to the IR case.<n>Experiments show that incorporating RSA consistently improves multiple sparse retrieval models and state-of-the-art performance on out-of-domain datasets.
- Score: 29.652506774818267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current sparse neural information retrieval (IR) methods, and to a lesser extent more traditional models such as BM25, do not take into account the document collection and the complex interplay between different term weights when representing a single document. In this paper, we show how the Rational Speech Acts (RSA), a linguistics framework used to minimize the number of features to be communicated when identifying an object in a set, can be adapted to the IR case -- and in particular to the high number of potential features (here, tokens). RSA dynamically modulates token-document interactions by considering the influence of other documents in the dataset, better contrasting document representations. Experiments show that incorporating RSA consistently improves multiple sparse retrieval models and achieves state-of-the-art performance on out-of-domain datasets from the BEIR benchmark. https://github.com/arthur-75/Rational-Retrieval-Acts
Related papers
- Multimodal Information Retrieval for Open World with Edit Distance Weak Supervision [0.0]
"FemmIR" is a framework to retrieve results relevant to information needs expressed with multimodal queries by example without any similarity label.<n>We empirically evaluate FemmIR on a missing person use case with MuQNOL.
arXiv Detail & Related papers (2025-06-25T00:25:08Z) - Learning More Effective Representations for Dense Retrieval through Deliberate Thinking Before Search [65.53881294642451]
Deliberate Thinking based Dense Retriever (DEBATER)<n>DEBATER enhances recent dense retrievers by enabling them to learn more effective document representations through a step-by-step thinking process.<n> Experimental results show that DEBATER significantly outperforms existing methods across several retrieval benchmarks.
arXiv Detail & Related papers (2025-02-18T15:56:34Z) - Towards Text-Image Interleaved Retrieval [49.96332254241075]
We introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences.<n>We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries.<n>We propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity.
arXiv Detail & Related papers (2025-02-18T12:00:47Z) - RARe: Retrieval Augmented Retrieval with In-Context Examples [40.963703726988946]
We introduce a simple approach to enable retrievers to use in-context examples.
RARE finetunes a pre-trained model with in-context examples whose query is semantically similar to the target query.
We find RARe exhibits stronger out-of-domain generalization compared to models using queries without in-context examples.
arXiv Detail & Related papers (2024-10-26T05:46:20Z) - Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
We model the subgraph retrieval task as a conditional generation task handled by small language models.
Our base generative subgraph retrieval model, consisting of only 220M parameters, competitive retrieval performance compared to state-of-the-art models.
Our largest 3B model, when plugged with an LLM reader, sets new SOTA end-to-end performance on both the WebQSP and CWQ benchmarks.
arXiv Detail & Related papers (2024-10-08T15:22:36Z) - DREQ: Document Re-Ranking Using Entity-based Query Understanding [6.675805308519988]
DREQ is an entity-oriented dense document re-ranking model.
We emphasize the query-relevant entities within a document's representation while simultaneously attenuating the less relevant ones.
We show that DREQ outperforms state-of-the-art neural and non-neural re-ranking methods.
arXiv Detail & Related papers (2024-01-11T14:27:12Z) - SPRINT: A Unified Toolkit for Evaluating and Demystifying Zero-shot
Neural Sparse Retrieval [92.27387459751309]
We provide SPRINT, a unified Python toolkit for evaluating neural sparse retrieval.
We establish strong and reproducible zero-shot sparse retrieval baselines across the well-acknowledged benchmark, BEIR.
We show that SPLADEv2 produces sparse representations with a majority of tokens outside of the original query and document.
arXiv Detail & Related papers (2023-07-19T22:48:02Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
Large-scale retrieval is to recall relevant documents from a huge collection given a query.
Recent retrieval methods based on pre-trained language models (PLM) can be coarsely categorized into either dense-vector or lexicon-based paradigms.
We propose a new learning framework, UnifieR which unifies dense-vector and lexicon-based retrieval in one model with a dual-representing capability.
arXiv Detail & Related papers (2022-05-23T11:01:59Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.