IndicSQuAD: A Comprehensive Multilingual Question Answering Dataset for Indic Languages
- URL: http://arxiv.org/abs/2505.03688v2
- Date: Tue, 13 May 2025 11:11:55 GMT
- Title: IndicSQuAD: A Comprehensive Multilingual Question Answering Dataset for Indic Languages
- Authors: Sharvi Endait, Ruturaj Ghatage, Aditya Kulkarni, Rajlaxmi Patil, Raviraj Joshi,
- Abstract summary: We present IndicSQuAD, a comprehensive multi-lingual extractive QA dataset covering nine major Indic languages.<n>IndicSQuAD comprises extensive training, validation, and test sets for each language.<n>We evaluate baseline performances using language-specific monolingual BERT models and the multilingual MuRIL-BERT.
- Score: 0.4194295877935868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress in question-answering (QA) systems has predominantly benefited high-resource languages, leaving Indic languages largely underrepresented despite their vast native speaker base. In this paper, we present IndicSQuAD, a comprehensive multi-lingual extractive QA dataset covering nine major Indic languages, systematically derived from the SQuAD dataset. Building on previous work with MahaSQuAD for Marathi, our approach adapts and extends translation techniques to maintain high linguistic fidelity and accurate answer-span alignment across diverse languages. IndicSQuAD comprises extensive training, validation, and test sets for each language, providing a robust foundation for model development. We evaluate baseline performances using language-specific monolingual BERT models and the multilingual MuRIL-BERT. The results indicate some challenges inherent in low-resource settings. Moreover, our experiments suggest potential directions for future work, including expanding to additional languages, developing domain-specific datasets, and incorporating multimodal data. The dataset and models are publicly shared at https://github.com/l3cube-pune/indic-nlp
Related papers
- Judging Quality Across Languages: A Multilingual Approach to Pretraining Data Filtering with Language Models [52.22235443948351]
High-quality multilingual training data is essential for effectively pretraining large language models (LLMs)<n>Here, we introduce JQL, a systematic approach that efficiently curates diverse and high-quality multilingual data at scale.<n>JQL distills LLMs' annotation capabilities into lightweight annotators based on pretrained multilingual embeddings.
arXiv Detail & Related papers (2025-05-28T11:06:54Z) - Enhancing Multilingual Language Models for Code-Switched Input Data [0.0]
This research investigates if pre-training Multilingual BERT (mBERT) on code-switched datasets improves the model's performance on critical NLP tasks.<n>We use a dataset of Spanglish tweets for pre-training and evaluate the pre-trained model against a baseline model.<n>Our findings show that our pre-trained mBERT model outperforms or matches the baseline model in the given tasks, with the most significant improvements seen for parts of speech tagging.
arXiv Detail & Related papers (2025-03-11T02:49:41Z) - BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation [28.456351723077088]
BOUQuET is a multi-way, multicentric and multi-register/domain dataset and benchmark.<n>This dataset is handcrafted in 8 non-English languages.
arXiv Detail & Related papers (2025-02-06T18:56:37Z) - Multilingual State Space Models for Structured Question Answering in Indic Languages [2.591667713953504]
This paper explores the application of State Space Models (SSMs) to build efficient and contextually aware QA systems tailored for Indic languages.<n>SSMs are particularly suited for this task due to their ability to model long-term and short-term dependencies in sequential data.<n>Our results demonstrate that these models effectively capture linguistic subtleties, leading to significant improvements in question interpretation, context alignment, and answer generation.
arXiv Detail & Related papers (2025-02-01T19:53:02Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.<n>P-MMEval delivers consistent language coverage across various datasets and provides parallel samples.<n>We conduct extensive experiments on representative multilingual model series to compare performances across models and tasks.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - Table Question Answering for Low-resourced Indic Languages [71.57359949962678]
TableQA is the task of answering questions over tables of structured information, returning individual cells or tables as output.
We introduce a fully automatic large-scale tableQA data generation process for low-resource languages with limited budget.
We incorporate our data generation method on two Indic languages, Bengali and Hindi, which have no tableQA datasets or models.
arXiv Detail & Related papers (2024-10-04T16:26:12Z) - INDIC QA BENCHMARK: A Multilingual Benchmark to Evaluate Question Answering capability of LLMs for Indic Languages [25.402797722575805]
Indic QA Benchmark is a dataset for context grounded question answering in 11 major Indian languages.<n> Evaluations revealed weak performance in low resource languages due to a strong English language bias in their training data.<n>We also investigated the Translate Test paradigm,where inputs are translated to English for processing and the results are translated back into the source language for output.
arXiv Detail & Related papers (2024-07-18T13:57:16Z) - Krutrim LLM: A Novel Tokenization Strategy for Multilingual Indic Languages with Petabyte-Scale Data Processing [0.9517284168469607]
We develop a novel approach to data preparation for developing multilingual Indic large language model.<n>Our meticulous data acquisition spans open-source and proprietary sources, including Common Crawl, Indic books, news articles, and Wikipedia.<n>For each Indic language, we design a custom preprocessing pipeline to effectively eliminate redundant and low-quality text content.
arXiv Detail & Related papers (2024-07-17T11:06:27Z) - mCSQA: Multilingual Commonsense Reasoning Dataset with Unified Creation Strategy by Language Models and Humans [27.84922167294656]
It is challenging to curate a dataset for language-specific knowledge and common sense.
Most current multilingual datasets are created through translation, which cannot evaluate such language-specific aspects.
We propose Multilingual CommonsenseQA (mCSQA) based on the construction process of CSQA but leveraging language models for a more efficient construction.
arXiv Detail & Related papers (2024-06-06T16:14:54Z) - Aya Dataset: An Open-Access Collection for Multilingual Instruction
Tuning [49.79783940841352]
Existing datasets are almost all in the English language.
We work with fluent speakers of languages from around the world to collect natural instances of instructions and completions.
We create the most extensive multilingual collection to date, comprising 513 million instances through templating and translating existing datasets across 114 languages.
arXiv Detail & Related papers (2024-02-09T18:51:49Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
We present Belebele, a dataset spanning 122 language variants.
This dataset enables the evaluation of text models in high-, medium-, and low-resource languages.
arXiv Detail & Related papers (2023-08-31T17:43:08Z) - MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for
Natural Language Understanding in Task-Oriented Dialogue [115.32009638844059]
We extend the English only NLU++ dataset to include manual translations into a range of high, medium, and low resource languages.
Because of its multi-intent property, MULTI3NLU++ represents complex and natural user goals.
We use MULTI3NLU++ to benchmark state-of-the-art multilingual models for the Natural Language Understanding tasks of intent detection and slot labelling.
arXiv Detail & Related papers (2022-12-20T17:34:25Z) - GlobalWoZ: Globalizing MultiWoZ to Develop Multilingual Task-Oriented
Dialogue Systems [66.92182084456809]
We introduce a novel data curation method that generates GlobalWoZ -- a large-scale multilingual ToD dataset from an English ToD dataset.
Our method is based on translating dialogue templates and filling them with local entities in the target-language countries.
We release our dataset as well as a set of strong baselines to encourage research on learning multilingual ToD systems for real use cases.
arXiv Detail & Related papers (2021-10-14T19:33:04Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.