Matching Distance and Geometric Distribution Aided Learning Multiview Point Cloud Registration
- URL: http://arxiv.org/abs/2505.03692v1
- Date: Tue, 06 May 2025 16:54:07 GMT
- Title: Matching Distance and Geometric Distribution Aided Learning Multiview Point Cloud Registration
- Authors: Shiqi Li, Jihua Zhu, Yifan Xie, Naiwen Hu, Di Wang,
- Abstract summary: Multiview point cloud registration plays a crucial role in robotics, automation, and computer vision fields.<n>Previous methods for pose graph construction often pruned fully connected graphs or constructed sparse graph using global feature aggregated from local descriptors.<n>We design a network model that extracts information from the matching distance between point cloud pairs.<n>For motion synchronization, we propose another neural network model to calculate the absolute pose in a data-driven manner.
- Score: 15.594026254653276
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multiview point cloud registration plays a crucial role in robotics, automation, and computer vision fields. This paper concentrates on pose graph construction and motion synchronization within multiview registration. Previous methods for pose graph construction often pruned fully connected graphs or constructed sparse graph using global feature aggregated from local descriptors, which may not consistently yield reliable results. To identify dependable pairs for pose graph construction, we design a network model that extracts information from the matching distance between point cloud pairs. For motion synchronization, we propose another neural network model to calculate the absolute pose in a data-driven manner, rather than optimizing inaccurate handcrafted loss functions. Our model takes into account geometric distribution information and employs a modified attention mechanism to facilitate flexible and reliable feature interaction. Experimental results on diverse indoor and outdoor datasets confirm the effectiveness and generalizability of our approach. The source code is available at https://github.com/Shi-Qi-Li/MDGD.
Related papers
- Unified People Tracking with Graph Neural Networks [39.22185669123208]
We present a unified, fully differentiable model for multi-people tracking that learns to associate detections into trajectories.<n>The model builds a dynamic graph that aggregates spatial, contextual, and temporal information.<n>We also introduce a new scale dataset with 25 partially overlapping views, detailed scene reconstructions, and extensive occlusions.
arXiv Detail & Related papers (2025-07-11T11:17:25Z) - Pose-Graph Attentional Graph Neural Network for Lidar Place Recognition [16.391871270609055]
This paper proposes a pose-graph attentional graph neural network, called P-GAT.
It compares keynodes between sequential and non-sequential sub-graphs for place recognition tasks.
P-GAT uses the maximum spatial and temporal information between neighbour cloud descriptors.
arXiv Detail & Related papers (2023-08-31T23:17:44Z) - Structured Cooperative Learning with Graphical Model Priors [98.53322192624594]
We study how to train personalized models for different tasks on decentralized devices with limited local data.
We propose "Structured Cooperative Learning (SCooL)", in which a cooperation graph across devices is generated by a graphical model.
We evaluate SCooL and compare it with existing decentralized learning methods on an extensive set of benchmarks.
arXiv Detail & Related papers (2023-06-16T02:41:31Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
We propose a graph-based personalized algorithm (GATTA) for distributed deep learning.
In particular, the personalized model in each agent is composed of a global part and a node-specific part.
By treating each agent as one node in a graph the node-specific parameters as its features, the benefits of the graph attention mechanism can be inherited.
arXiv Detail & Related papers (2023-05-22T13:48:30Z) - Robust Multiview Point Cloud Registration with Reliable Pose Graph
Initialization and History Reweighting [63.95845583460312]
We present a new method for the multiview registration of point cloud.
Our method achieves 11% higher registration recall on the 3DMatch dataset and 13% lower registration errors on the ScanNet dataset.
arXiv Detail & Related papers (2023-04-02T06:43:40Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
We propose a general learnable graph matching method to address these issues.
Our method achieves state-of-the-art performance on several MOT datasets.
For image matching, our method outperforms state-of-the-art methods on a popular indoor dataset, ScanNet.
arXiv Detail & Related papers (2023-03-27T17:39:00Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting [4.14360329494344]
We propose a novel traffic forecasting framework called Progressive Graph Convolutional Network (PGCN)
PGCN constructs a set of graphs by progressively adapting to online input data during the training and testing phases.
The proposed model achieves state-of-the-art performance with consistency in all datasets.
arXiv Detail & Related papers (2022-02-18T02:15:44Z) - PGGANet: Pose Guided Graph Attention Network for Person
Re-identification [0.0]
Person re-identification (ReID) aims at retrieving a person from images captured by different cameras.
It has been proved that using local features together with global feature of person image could help to give robust feature representations for person retrieval.
We propose a pose guided graph attention network, a multi-branch architecture consisting of one branch for global feature, one branch for mid-granular body features and one branch for fine-granular key point features.
arXiv Detail & Related papers (2021-11-29T09:47:39Z) - Mutually exciting point process graphs for modelling dynamic networks [0.0]
A new class of models for dynamic networks is proposed, called mutually exciting point process graphs (MEG)
MEG is a scalable network-wide statistical model for point processes with dyadic marks, which can be used for anomaly detection.
The model is tested on simulated graphs and real world computer network datasets, demonstrating excellent performance.
arXiv Detail & Related papers (2021-02-11T10:14:55Z) - Distributed Training of Graph Convolutional Networks using Subgraph
Approximation [72.89940126490715]
We propose a training strategy that mitigates the lost information across multiple partitions of a graph through a subgraph approximation scheme.
The subgraph approximation approach helps the distributed training system converge at single-machine accuracy.
arXiv Detail & Related papers (2020-12-09T09:23:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.