Hierarchical Multi-Label Generation with Probabilistic Level-Constraint
- URL: http://arxiv.org/abs/2505.03775v1
- Date: Wed, 30 Apr 2025 07:56:53 GMT
- Title: Hierarchical Multi-Label Generation with Probabilistic Level-Constraint
- Authors: Linqing Chen, Weilei Wang, Wentao Wu, Hanmeng Zhong,
- Abstract summary: Hierarchical Extreme Multi-Label Classification poses greater difficulties compared to traditional multi-label classification.<n>We employ a generative framework with Probabilistic Level Constraints (PLC) to generate hierarchical labels within a specific taxonomy.<n>Our approach achieves a new SOTA performance in the HMG task, but also has a much better performance in constrained the output of model than previous research work.
- Score: 3.1427813443719868
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hierarchical Extreme Multi-Label Classification poses greater difficulties compared to traditional multi-label classification because of the intricate hierarchical connections of labels within a domain-specific taxonomy and the substantial number of labels. Some of the prior research endeavors centered on classifying text through several ancillary stages such as the cluster algorithm and multiphase classification. Others made attempts to leverage the assistance of generative methods yet were unable to properly control the output of the generative model. We redefine the task from hierarchical multi-Label classification to Hierarchical Multi-Label Generation (HMG) and employ a generative framework with Probabilistic Level Constraints (PLC) to generate hierarchical labels within a specific taxonomy that have complex hierarchical relationships. The approach we proposed in this paper enables the framework to generate all relevant labels across levels for each document without relying on preliminary operations like clustering. Meanwhile, it can control the model output precisely in terms of count, length, and level aspects. Experiments demonstrate that our approach not only achieves a new SOTA performance in the HMG task, but also has a much better performance in constrained the output of model than previous research work.
Related papers
- Semi-Supervised Hierarchical Multi-Label Classifier Based on Local Information [1.6574413179773761]
Semi-supervised hierarchical multi-label classifier based on local information (SSHMC-BLI)
SSHMC-BLI builds pseudo-labels for each unlabeled instance from the paths of labels of its labeled neighbors.
Experiments on 12 challenging datasets from functional genomics show that making use of unlabeled along with labeled data can help to improve the performance of a supervised hierarchical classifier trained only on labeled data.
arXiv Detail & Related papers (2024-04-30T20:16:40Z) - Adopting the Multi-answer Questioning Task with an Auxiliary Metric for
Extreme Multi-label Text Classification Utilizing the Label Hierarchy [10.87653109398961]
This paper adopts the multi-answer questioning task for extreme multi-label classification.
This study adopts the proposed method and the evaluation metric to the legal domain.
arXiv Detail & Related papers (2023-03-02T08:40:31Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
We present a hierarchical multi-label representation learning framework that can leverage all available labels and preserve the hierarchical relationship between classes.
We introduce novel hierarchy preserving losses, which jointly apply a hierarchical penalty to the contrastive loss, and enforce the hierarchy constraint.
arXiv Detail & Related papers (2022-04-27T21:41:44Z) - Label Hierarchy Transition: Delving into Class Hierarchies to Enhance
Deep Classifiers [40.993137740456014]
We propose a unified probabilistic framework based on deep learning to address the challenges of hierarchical classification.
The proposed framework can be readily adapted to any existing deep network with only minor modifications.
We extend our proposed LHT framework to the skin lesion diagnosis task and validate its great potential in computer-aided diagnosis.
arXiv Detail & Related papers (2021-12-04T14:58:36Z) - Modeling Heterogeneous Hierarchies with Relation-specific Hyperbolic
Cones [64.75766944882389]
We present ConE (Cone Embedding), a KG embedding model that is able to simultaneously model multiple hierarchical as well as non-hierarchical relations in a knowledge graph.
In particular, ConE uses cone containment constraints in different subspaces of the hyperbolic embedding space to capture multiple heterogeneous hierarchies.
Our approach yields new state-of-the-art Hits@1 of 45.3% on WN18RR and 16.1% on DDB14 (0.231 MRR)
arXiv Detail & Related papers (2021-10-28T07:16:08Z) - Coherent Hierarchical Multi-Label Classification Networks [56.41950277906307]
C-HMCNN(h) is a novel approach for HMC problems, which exploits hierarchy information in order to produce predictions coherent with the constraint and improve performance.
We conduct an extensive experimental analysis showing the superior performance of C-HMCNN(h) when compared to state-of-the-art models.
arXiv Detail & Related papers (2020-10-20T09:37:02Z) - An Empirical Study on Large-Scale Multi-Label Text Classification
Including Few and Zero-Shot Labels [49.036212158261215]
Large-scale Multi-label Text Classification (LMTC) has a wide range of Natural Language Processing (NLP) applications.
Current state-of-the-art LMTC models employ Label-Wise Attention Networks (LWANs)
We show that hierarchical methods based on Probabilistic Label Trees (PLTs) outperform LWANs.
We propose a new state-of-the-art method which combines BERT with LWANs.
arXiv Detail & Related papers (2020-10-04T18:55:47Z) - Exploring the Hierarchy in Relation Labels for Scene Graph Generation [75.88758055269948]
The proposed method can improve several state-of-the-art baselines by a large margin (up to $33%$ relative gain) in terms of Recall@50.
Experiments show that the proposed simple yet effective method can improve several state-of-the-art baselines by a large margin.
arXiv Detail & Related papers (2020-09-12T17:36:53Z) - Interaction Matching for Long-Tail Multi-Label Classification [57.262792333593644]
We present an elegant and effective approach for addressing limitations in existing multi-label classification models.
By performing soft n-gram interaction matching, we match labels with natural language descriptions.
arXiv Detail & Related papers (2020-05-18T15:27:55Z) - Joint Embedding of Words and Category Labels for Hierarchical
Multi-label Text Classification [4.2750700546937335]
hierarchical text classification (HTC) has received extensive attention and has broad application prospects.
We propose a joint embedding of text and parent category based on hierarchical fine-tuning ordered neurons LSTM (HFT-ONLSTM) for HTC.
arXiv Detail & Related papers (2020-04-06T11:06:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.