Explainable Face Recognition via Improved Localization
- URL: http://arxiv.org/abs/2505.03837v1
- Date: Sun, 04 May 2025 21:58:16 GMT
- Title: Explainable Face Recognition via Improved Localization
- Authors: Rashik Shadman, Daqing Hou, Faraz Hussain, M G Sarwar Murshed,
- Abstract summary: Deep learning-based face recognition systems operate like black-box models that do not provide necessary explanations or justifications for their decisions.<n>This is a major disadvantage because users cannot trust such artificial intelligence-based biometric systems and may not feel comfortable using them when clear explanations or justifications are not provided.<n>We use a Class Activation Mapping (CAM)-based discriminative localization (very narrow/specific localization) technique called Scaled Directed Divergence (SDD) to visually explain the results of deep learning-based face recognition systems.
- Score: 1.334824518603753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biometric authentication has become one of the most widely used tools in the current technological era to authenticate users and to distinguish between genuine users and imposters. Face is the most common form of biometric modality that has proven effective. Deep learning-based face recognition systems are now commonly used across different domains. However, these systems usually operate like black-box models that do not provide necessary explanations or justifications for their decisions. This is a major disadvantage because users cannot trust such artificial intelligence-based biometric systems and may not feel comfortable using them when clear explanations or justifications are not provided. This paper addresses this problem by applying an efficient method for explainable face recognition systems. We use a Class Activation Mapping (CAM)-based discriminative localization (very narrow/specific localization) technique called Scaled Directed Divergence (SDD) to visually explain the results of deep learning-based face recognition systems. We perform fine localization of the face features relevant to the deep learning model for its prediction/decision. Our experiments show that the SDD Class Activation Map (CAM) highlights the relevant face features very specifically compared to the traditional CAM and very accurately. The provided visual explanations with narrow localization of relevant features can ensure much-needed transparency and trust for deep learning-based face recognition systems.
Related papers
- Learning Knowledge-based Prompts for Robust 3D Mask Presentation Attack Detection [84.21257150497254]
We propose a novel knowledge-based prompt learning framework to explore the strong generalization capability of vision-language models for 3D mask presentation attack detection.<n> Experimental results demonstrate that the proposed method achieves state-of-the-art intra- and cross-scenario detection performance.
arXiv Detail & Related papers (2025-05-06T15:09:23Z) - Towards A Comprehensive Visual Saliency Explanation Framework for AI-based Face Recognition Systems [9.105950041800225]
This manuscript conceives a comprehensive explanation framework for face recognition tasks.
An exhaustive definition of visual saliency map-based explanations for AI-based face recognition systems is provided.
A new model-agnostic explanation method named CorrRISE is proposed to produce saliency maps.
arXiv Detail & Related papers (2024-07-08T14:25:46Z) - Deep Learning-based Spatio Temporal Facial Feature Visual Speech
Recognition [0.0]
We present an alternate authentication process that makes use of both facial recognition and the individual's distinctive temporal facial feature motions while they speak a password.
The suggested model attained an accuracy of 96.1% when tested on the industry-standard MIRACL-VC1 dataset.
arXiv Detail & Related papers (2023-04-30T18:52:29Z) - Analysis of Recent Trends in Face Recognition Systems [0.0]
Due to inter-class similarities and intra-class variations, face recognition systems generate false match and false non-match errors respectively.
Recent research focuses on improving the robustness of extracted features and the pre-processing algorithms to enhance recognition accuracy.
arXiv Detail & Related papers (2023-04-23T18:55:45Z) - Explanation of Face Recognition via Saliency Maps [13.334500258498798]
This paper proposes a rigorous definition of explainable face recognition (XFR)
It then introduces a similarity-based RISE algorithm (S-RISE) to produce high-quality visual saliency maps.
An evaluation approach is proposed to systematically validate the reliability and accuracy of general visual saliency-based XFR methods.
arXiv Detail & Related papers (2023-04-12T19:04:21Z) - Visual Recognition with Deep Nearest Centroids [57.35144702563746]
We devise deep nearest centroids (DNC), a conceptually elegant yet surprisingly effective network for large-scale visual recognition.
Compared with parametric counterparts, DNC performs better on image classification (CIFAR-10, ImageNet) and greatly boots pixel recognition (ADE20K, Cityscapes)
arXiv Detail & Related papers (2022-09-15T15:47:31Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
State-of-the-art general face recognition models do not generalize well to occluded face images.
This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network.
Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks.
arXiv Detail & Related papers (2021-08-21T09:08:41Z) - Progressive Spatio-Temporal Bilinear Network with Monte Carlo Dropout
for Landmark-based Facial Expression Recognition with Uncertainty Estimation [93.73198973454944]
The performance of our method is evaluated on three widely used datasets.
It is comparable to that of video-based state-of-the-art methods while it has much less complexity.
arXiv Detail & Related papers (2021-06-08T13:40:30Z) - Harnessing Unrecognizable Faces for Face Recognition [87.80037162457427]
We propose a measure of recognizability of a face image, implemented by a deep neural network trained using mostly recognizable identities.
We show that accounting for recognizability reduces error rate of single-image face recognition by 58% at FAR=1e-5.
arXiv Detail & Related papers (2021-06-08T05:25:03Z) - AuthNet: A Deep Learning based Authentication Mechanism using Temporal
Facial Feature Movements [0.0]
We propose an alternative authentication mechanism that uses both facial recognition and the unique movements of that particular face while uttering a password.
The proposed model is not inhibited by language barriers because a user can set a password in any language.
arXiv Detail & Related papers (2020-12-04T10:46:12Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
We audit ArcFace, a state-of-the-art, open source face recognition system, in a large-scale face identification experiment with more than one million distractor images.
We find a Rank-1 face identification accuracy of 79.71% for individuals present in the model's training data and an accuracy of 75.73% for those not present.
arXiv Detail & Related papers (2020-01-09T15:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.