SAND: One-Shot Feature Selection with Additive Noise Distortion
- URL: http://arxiv.org/abs/2505.03923v1
- Date: Tue, 06 May 2025 18:59:35 GMT
- Title: SAND: One-Shot Feature Selection with Additive Noise Distortion
- Authors: Pedram Pad, Hadi Hammoud, Mohamad Dia, Nadim Maamari, L. Andrea Dunbar,
- Abstract summary: We introduce a novel, non-intrusive feature selection layer that automatically identifies and selects the $k$ most informative features during neural network training.<n>Our method is uniquely simple, requiring no alterations to the loss function, network architecture, or post-selection retraining.<n>Our work demonstrates that simplicity and performance are not mutually exclusive, offering a powerful yet straightforward tool for feature selection in machine learning.
- Score: 3.5976830118932583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature selection is a critical step in data-driven applications, reducing input dimensionality to enhance learning accuracy, computational efficiency, and interpretability. Existing state-of-the-art methods often require post-selection retraining and extensive hyperparameter tuning, complicating their adoption. We introduce a novel, non-intrusive feature selection layer that, given a target feature count $k$, automatically identifies and selects the $k$ most informative features during neural network training. Our method is uniquely simple, requiring no alterations to the loss function, network architecture, or post-selection retraining. The layer is mathematically elegant and can be fully described by: \begin{align} \nonumber \tilde{x}_i = a_i x_i + (1-a_i)z_i \end{align} where $x_i$ is the input feature, $\tilde{x}_i$ the output, $z_i$ a Gaussian noise, and $a_i$ trainable gain such that $\sum_i{a_i^2}=k$. This formulation induces an automatic clustering effect, driving $k$ of the $a_i$ gains to $1$ (selecting informative features) and the rest to $0$ (discarding redundant ones) via weighted noise distortion and gain normalization. Despite its extreme simplicity, our method delivers state-of-the-art performance on standard benchmark datasets and a novel real-world dataset, outperforming or matching existing approaches without requiring hyperparameter search for $k$ or retraining. Theoretical analysis in the context of linear regression further validates its efficacy. Our work demonstrates that simplicity and performance are not mutually exclusive, offering a powerful yet straightforward tool for feature selection in machine learning.
Related papers
- Data Selection for ERMs [67.57726352698933]
We study how well can $mathcalA$ perform when trained on at most $nll N$ data points selected from a population of $N$ points.<n>Our results include optimal data-selection bounds for mean estimation, linear classification, and linear regression.
arXiv Detail & Related papers (2025-04-20T11:26:01Z) - Training a neural netwok for data reduction and better generalization [7.545668088790516]
Sparse learners compress the inputs (features) by selecting only the ones needed for good generalization.<n>A human scientist can then give an intelligent interpretation to the few selected features.<n>Our method is flexible, applying to complex models ranging from shallow to deep artificial neural networks.
arXiv Detail & Related papers (2024-11-26T07:41:15Z) - Pretrained transformer efficiently learns low-dimensional target functions in-context [40.77319247558742]
We show that a nonlinear transformer optimized by gradient descent learns $f_*$ in-context with a prompt length that only depends on the dimension of the distribution of target functions $r$.
Our result highlights the adaptivity of the pretrained transformer to low-dimensional structures of the function class, which enables sample-efficient ICL.
arXiv Detail & Related papers (2024-11-04T19:24:39Z) - Data-Efficient Learning via Clustering-Based Sensitivity Sampling:
Foundation Models and Beyond [28.651041302245538]
We present a new data selection approach based on $k$-means clustering and sampling sensitivity.
We show how it can be applied on linear regression, leading to a new sampling strategy that surprisingly matches the performances of leverage score sampling.
arXiv Detail & Related papers (2024-02-27T09:03:43Z) - Sample-Efficient Linear Representation Learning from Non-IID Non-Isotropic Data [4.971690889257356]
We introduce an adaptation of the alternating minimization-descent scheme proposed by Collins and Nayer and Vaswani.
We show that vanilla alternating-minimization descent fails catastrophically even for iid, but mildly non-isotropic data.
Our analysis unifies and generalizes prior work, and provides a flexible framework for a wider range of applications.
arXiv Detail & Related papers (2023-08-08T17:56:20Z) - Blessing of Class Diversity in Pre-training [54.335530406959435]
We prove that when the classes of the pre-training task are sufficiently diverse, pre-training can significantly improve the sample efficiency of downstream tasks.
Our proof relies on a vector-form Rademacher complexity chain rule for composite function classes and a modified self-concordance condition.
arXiv Detail & Related papers (2022-09-07T20:10:12Z) - Neural Greedy Pursuit for Feature Selection [72.4121881681861]
We propose a greedy algorithm to select $N$ important features among $P$ input features for a non-linear prediction problem.
We use neural networks as predictors in the algorithm to compute the loss.
arXiv Detail & Related papers (2022-07-19T16:39:16Z) - Approximate Function Evaluation via Multi-Armed Bandits [51.146684847667125]
We study the problem of estimating the value of a known smooth function $f$ at an unknown point $boldsymbolmu in mathbbRn$, where each component $mu_i$ can be sampled via a noisy oracle.
We design an instance-adaptive algorithm that learns to sample according to the importance of each coordinate, and with probability at least $1-delta$ returns an $epsilon$ accurate estimate of $f(boldsymbolmu)$.
arXiv Detail & Related papers (2022-03-18T18:50:52Z) - Learning to extrapolate using continued fractions: Predicting the
critical temperature of superconductor materials [5.905364646955811]
In the field of Artificial Intelligence (AI) and Machine Learning (ML), the approximation of unknown target functions $y=f(mathbfx)$ is a common objective.
We refer to $S$ as the training set and aim to identify a low-complexity mathematical model that can effectively approximate this target function for new instances $mathbfx$.
arXiv Detail & Related papers (2020-11-27T04:57:40Z) - Improving Robustness and Generality of NLP Models Using Disentangled
Representations [62.08794500431367]
Supervised neural networks first map an input $x$ to a single representation $z$, and then map $z$ to the output label $y$.
We present methods to improve robustness and generality of NLP models from the standpoint of disentangled representation learning.
We show that models trained with the proposed criteria provide better robustness and domain adaptation ability in a wide range of supervised learning tasks.
arXiv Detail & Related papers (2020-09-21T02:48:46Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
We propose an efficient alternative for optimal synthetic data generation based on a novel differentiable approximation of the objective.
We demonstrate that the proposed method finds the optimal data distribution faster (up to $50times$), with significantly reduced training data generation (up to $30times$) and better accuracy ($+8.7%$) on real-world test datasets than previous methods.
arXiv Detail & Related papers (2020-08-16T11:36:11Z) - Learning nonlinear dynamical systems from a single trajectory [102.60042167341956]
We introduce algorithms for learning nonlinear dynamical systems of the form $x_t+1=sigma(Thetastarx_t)+varepsilon_t$.
We give an algorithm that recovers the weight matrix $Thetastar$ from a single trajectory with optimal sample complexity and linear running time.
arXiv Detail & Related papers (2020-04-30T10:42:48Z) - $\pi$VAE: a stochastic process prior for Bayesian deep learning with
MCMC [2.4792948967354236]
We propose a novel variational autoencoder called the prior encodingal autoencoder ($pi$VAE)
We show that our framework can accurately learn expressive function classes such as Gaussian processes, but also properties of functions to enable statistical inference.
Perhaps most usefully, we demonstrate that the low dimensional distributed latent space representation learnt provides an elegant and scalable means of performing inference for processes within programming languages such as Stan.
arXiv Detail & Related papers (2020-02-17T10:23:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.