Prototype-Based Information Compensation Network for Multi-Source Remote Sensing Data Classification
- URL: http://arxiv.org/abs/2505.04003v1
- Date: Tue, 06 May 2025 22:30:23 GMT
- Title: Prototype-Based Information Compensation Network for Multi-Source Remote Sensing Data Classification
- Authors: Feng Gao, Sheng Liu, Chuanzheng Gong, Xiaowei Zhou, Jiayi Wang, Junyu Dong, Qian Du,
- Abstract summary: Multi-source remote sensing data joint classification aims to provide accuracy and reliability of land cover classification.<n>Existing methods confront two challenges: inter-frequency multi-source feature coupling and inconsistency of complementary information exploration.<n>We present a Prototype-based Information Compensation Network (PICNet) for land cover classification based on HSI and SAR/LiDAR data.
- Score: 56.065032039986725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-source remote sensing data joint classification aims to provide accuracy and reliability of land cover classification by leveraging the complementary information from multiple data sources. Existing methods confront two challenges: inter-frequency multi-source feature coupling and inconsistency of complementary information exploration. To solve these issues, we present a Prototype-based Information Compensation Network (PICNet) for land cover classification based on HSI and SAR/LiDAR data. Specifically, we first design a frequency interaction module to enhance the inter-frequency coupling in multi-source feature extraction. The multi-source features are first decoupled into high- and low-frequency components. Then, these features are recoupled to achieve efficient inter-frequency communication. Afterward, we design a prototype-based information compensation module to model the global multi-source complementary information. Two sets of learnable modality prototypes are introduced to represent the global modality information of multi-source data. Subsequently, cross-modal feature integration and alignment are achieved through cross-attention computation between the modality-specific prototype vectors and the raw feature representations. Extensive experiments on three public datasets demonstrate the significant superiority of our PICNet over state-of-the-art methods. The codes are available at https://github.com/oucailab/PICNet.
Related papers
- Multimodality Helps Few-shot 3D Point Cloud Semantic Segmentation [61.91492500828508]
Few-shot 3D point cloud segmentation (FS-PCS) aims at generalizing models to segment novel categories with minimal support samples.<n>We introduce a multimodal FS-PCS setup, utilizing textual labels and the potentially available 2D image modality.<n>We propose a simple yet effective Test-time Adaptive Cross-modal (TACC) technique to mitigate training bias.
arXiv Detail & Related papers (2024-10-29T19:28:41Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Hierarchical Attention and Parallel Filter Fusion Network for Multi-Source Data Classification [33.26466989592473]
We propose a hierarchical attention and parallel filter fusion network for multi-source data classification.
Our proposed method achieves 91.44% and 80.51% of overall accuracy (OA) on the respective datasets.
arXiv Detail & Related papers (2024-08-22T23:14:22Z) - Multimodal Informative ViT: Information Aggregation and Distribution for
Hyperspectral and LiDAR Classification [25.254816993934746]
Multimodal Informative Vit (MIVit) is a system with an innovative information aggregate-distributing mechanism.
MIVit reduces redundancy in the empirical distribution of each modality's separate and fused features.
Our results show that MIVit's bidirectional aggregate-distributing mechanism is highly effective.
arXiv Detail & Related papers (2024-01-06T09:53:33Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input.
We propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies.
arXiv Detail & Related papers (2023-08-07T12:26:34Z) - A3CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural
Network for Multisource Remote Sensing Data Classification [24.006660419933727]
We propose a new approach to exploit the complement of two data sources: hyperspectral images (HSIs) and light detection and ranging (LiDAR) data.
We develop a new dual-channel spatial, spectral and multiscale attention convolutional long short-term memory neural network (called dual-channel A3CLNN) for feature extraction and classification.
arXiv Detail & Related papers (2022-04-09T12:43:32Z) - Multi-modal land cover mapping of remote sensing images using pyramid
attention and gated fusion networks [20.66034058363032]
We propose a new multi-modality network for land cover mapping of multi-modal remote sensing data based on a novel pyramid attention fusion (PAF) module and a gated fusion unit (GFU)
PAF module is designed to efficiently obtain rich fine-grained contextual representations from each modality with a built-in cross-level and cross-view attention fusion mechanism.
GFU module utilizes a novel gating mechanism for early merging of features, thereby diminishing hidden redundancies and noise.
arXiv Detail & Related papers (2021-11-06T10:01:01Z) - MBDF-Net: Multi-Branch Deep Fusion Network for 3D Object Detection [17.295359521427073]
We propose a Multi-Branch Deep Fusion Network (MBDF-Net) for 3D object detection.
In the first stage, our multi-branch feature extraction network utilizes Adaptive Attention Fusion modules to produce cross-modal fusion features from single-modal semantic features.
In the second stage, we use a region of interest (RoI) -pooled fusion module to generate enhanced local features for refinement.
arXiv Detail & Related papers (2021-08-29T15:40:15Z) - Specificity-preserving RGB-D Saliency Detection [103.3722116992476]
We propose a specificity-preserving network (SP-Net) for RGB-D saliency detection.
Two modality-specific networks and a shared learning network are adopted to generate individual and shared saliency maps.
Experiments on six benchmark datasets demonstrate that our SP-Net outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2021-08-18T14:14:22Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
We propose a novel cross-modal deep-learning framework called X-ModalNet.
X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network.
We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods.
arXiv Detail & Related papers (2020-06-24T15:29:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.