Identification and Optimization of Redundant Code Using Large Language Models
- URL: http://arxiv.org/abs/2505.04040v1
- Date: Wed, 07 May 2025 00:44:32 GMT
- Title: Identification and Optimization of Redundant Code Using Large Language Models
- Authors: Shamse Tasnim Cynthia,
- Abstract summary: Redundant code is a persistent challenge in software development that makes systems harder to maintain, scale, and update.<n>This research aims to identify recurring patterns of redundancy and analyze their underlying causes, such as outdated practices or insufficient awareness of best coding principles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Redundant code is a persistent challenge in software development that makes systems harder to maintain, scale, and update. It adds unnecessary complexity, hinders bug fixes, and increases technical debt. Despite their impact, removing redundant code manually is risky and error-prone, often introducing new bugs or missing dependencies. While studies highlight the prevalence and negative impact of redundant code, little focus has been given to Artificial Intelligence (AI) system codebases and the common patterns that cause redundancy. Additionally, the reasons behind developers unintentionally introducing redundant code remain largely unexplored. This research addresses these gaps by leveraging large language models (LLMs) to automatically detect and optimize redundant code in AI projects. Our research aims to identify recurring patterns of redundancy and analyze their underlying causes, such as outdated practices or insufficient awareness of best coding principles. Additionally, we plan to propose an LLM agent that will facilitate the detection and refactoring of redundancies on a large scale while preserving original functionality. This work advances the application of AI in identifying and optimizing redundant code, ultimately helping developers maintain cleaner, more readable, and scalable codebases.
Related papers
- ACE: Automated Technical Debt Remediation with Validated Large Language Model Refactorings [8.0322025529523]
This paper introduces Augmented Code Engineering (ACE), a tool that automates code improvements using validated output.<n>Early feedback from users suggests that AI-enabled helps mitigate code-level technical debt that otherwise rarely gets acted upon.
arXiv Detail & Related papers (2025-07-04T12:39:27Z) - The Code Barrier: What LLMs Actually Understand? [7.407441962359689]
This research uses code obfuscation as a structured testing framework to evaluate semantic understanding capabilities of language models.<n>Findings show a statistically significant performance decline as obfuscation complexity increases.<n>This research introduces a new evaluation approach for assessing code comprehension in language models.
arXiv Detail & Related papers (2025-04-14T14:11:26Z) - Code to Think, Think to Code: A Survey on Code-Enhanced Reasoning and Reasoning-Driven Code Intelligence in LLMs [53.00384299879513]
In large language models (LLMs), code and reasoning reinforce each other.<n>Code provides verifiable execution paths, enforces logical decomposition, and enables runtime validation.<n>We identify key challenges and propose future research directions to strengthen this synergy.
arXiv Detail & Related papers (2025-02-26T18:55:42Z) - Bridging LLM-Generated Code and Requirements: Reverse Generation technique and SBC Metric for Developer Insights [0.0]
This paper introduces a novel scoring mechanism called the SBC score.<n>It is based on a reverse generation technique that leverages the natural language generation capabilities of Large Language Models.<n>Unlike direct code analysis, our approach reconstructs system requirements from AI-generated code and compares them with the original specifications.
arXiv Detail & Related papers (2025-02-11T01:12:11Z) - LLMs as Continuous Learners: Improving the Reproduction of Defective Code in Software Issues [62.12404317786005]
EvoCoder is a continuous learning framework for issue code reproduction.
Our results show a 20% improvement in issue reproduction rates over existing SOTA methods.
arXiv Detail & Related papers (2024-11-21T08:49:23Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - Investigating the Transferability of Code Repair for Low-Resource Programming Languages [57.62712191540067]
Large language models (LLMs) have shown remarkable performance on code generation tasks.
Recent works augment the code repair process by integrating modern techniques such as chain-of-thought reasoning or distillation.
We investigate the benefits of distilling code repair for both high and low resource languages.
arXiv Detail & Related papers (2024-06-21T05:05:39Z) - LLM-Powered Code Vulnerability Repair with Reinforcement Learning and
Semantic Reward [3.729516018513228]
We introduce a multipurpose code vulnerability analysis system textttSecRepair, powered by a large language model, CodeGen2.
Inspired by how humans fix code issues, we propose an instruction-based dataset suitable for vulnerability analysis with LLMs.
We identify zero-day and N-day vulnerabilities in 6 Open Source IoT Operating Systems on GitHub.
arXiv Detail & Related papers (2024-01-07T02:46:39Z) - CONCORD: Clone-aware Contrastive Learning for Source Code [64.51161487524436]
Self-supervised pre-training has gained traction for learning generic code representations valuable for many downstream SE tasks.
We argue that it is also essential to factor in how developers code day-to-day for general-purpose representation learning.
In particular, we propose CONCORD, a self-supervised, contrastive learning strategy to place benign clones closer in the representation space while moving deviants further apart.
arXiv Detail & Related papers (2023-06-05T20:39:08Z) - Chatbots As Fluent Polyglots: Revisiting Breakthrough Code Snippets [0.0]
The research applies AI-driven code assistants to analyze a selection of influential computer code that has shaped modern technology.
The original contribution of this study was to examine half of the most significant code advances in the last 50 years.
arXiv Detail & Related papers (2023-01-05T23:17:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.