Reliable Disentanglement Multi-view Learning Against View Adversarial Attacks
- URL: http://arxiv.org/abs/2505.04046v2
- Date: Wed, 21 May 2025 07:05:11 GMT
- Title: Reliable Disentanglement Multi-view Learning Against View Adversarial Attacks
- Authors: Xuyang Wang, Siyuan Duan, Qizhi Li, Guiduo Duan, Yuan Sun, Dezhong Peng,
- Abstract summary: Existing trusted multi-view learning methods implicitly assume that multi-view data is secure.<n>In safety-sensitive applications such as autonomous driving and security monitoring, multi-view data often faces threats from adversarial perturbations.<n>We propose a novel multi-view learning framework, namely Reliable Disentanglement Multi-view Learning (RDML)
- Score: 12.225939110845486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trustworthy multi-view learning has attracted extensive attention because evidence learning can provide reliable uncertainty estimation to enhance the credibility of multi-view predictions. Existing trusted multi-view learning methods implicitly assume that multi-view data is secure. However, in safety-sensitive applications such as autonomous driving and security monitoring, multi-view data often faces threats from adversarial perturbations, thereby deceiving or disrupting multi-view models. This inevitably leads to the adversarial unreliability problem (AUP) in trusted multi-view learning. To overcome this tricky problem, we propose a novel multi-view learning framework, namely Reliable Disentanglement Multi-view Learning (RDML). Specifically, we first propose evidential disentanglement learning to decompose each view into clean and adversarial parts under the guidance of corresponding evidences, which is extracted by a pretrained evidence extractor. Then, we employ the feature recalibration module to mitigate the negative impact of adversarial perturbations and extract potential informative features from them. Finally, to further ignore the irreparable adversarial interferences, a view-level evidential attention mechanism is designed. Extensive experiments on multi-view classification tasks with adversarial attacks show that RDML outperforms the state-of-the-art methods by a relatively large margin. Our code is available at https://github.com/Willy1005/2025-IJCAI-RDML.
Related papers
- Robust Multi-View Learning via Representation Fusion of Sample-Level Attention and Alignment of Simulated Perturbation [61.64052577026623]
Real-world multi-view datasets are often heterogeneous and imperfect.<n>We propose a novel robust MVL method (namely RML) with simultaneous representation fusion and alignment.<n>Our RML is self-supervised and can also be applied for downstream tasks as a regularization.
arXiv Detail & Related papers (2025-03-06T07:01:08Z) - Learning Fused State Representations for Control from Multi-View Observations [19.862313754887648]
Multi-view Reinforcement Learning (MVRL) seeks to provide agents with multi-view observations, enabling them to perceive environment with greater effectiveness and precision.<n>Recent advancements in MVRL focus on extracting latent representations from multiview observations and leveraging them in control tasks.<n>We propose Multi-view Fusion State for Control (MFSC), firstly incorporating bisimulation metric learning into MVRL to learn task-relevant representations.
arXiv Detail & Related papers (2025-02-03T12:46:02Z) - Hierarchical Mutual Distillation for Multi-View Fusion: Learning from All Possible View Combinations [0.053801353100098995]
We propose a novel Multi-View Uncertainty-Weighted Mutual Distillation (MV-UWMD) method.<n>MV-UWMD improves prediction accuracy and consistency compared to existing multi-view learning approaches.
arXiv Detail & Related papers (2024-11-15T09:45:32Z) - Evidential Deep Partial Multi-View Classification With Discount Fusion [24.139495744683128]
We propose a novel framework called Evidential Deep Partial Multi-View Classification (EDP-MVC)
We use K-means imputation to address missing views, creating a complete set of multi-view data.
The potential conflicts and uncertainties within this imputed data can affect the reliability of downstream inferences.
arXiv Detail & Related papers (2024-08-23T14:50:49Z) - Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
We propose a novel method named Regularized Contrastive Partial Multi-view Outlier Detection (RCPMOD)
In this framework, we utilize contrastive learning to learn view-consistent information and distinguish outliers by the degree of consistency.
Experimental results on four benchmark datasets demonstrate that our proposed approach could outperform state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-02T14:34:27Z) - Towards Generalized Multi-stage Clustering: Multi-view Self-distillation [10.368796552760571]
Existing multi-stage clustering methods independently learn the salient features from multiple views and then perform the clustering task.
This paper proposes a novel multi-stage deep MVC framework where multi-view self-distillation (DistilMVC) is introduced to distill dark knowledge of label distribution.
arXiv Detail & Related papers (2023-10-29T03:35:34Z) - When Measures are Unreliable: Imperceptible Adversarial Perturbations
toward Top-$k$ Multi-Label Learning [83.8758881342346]
A novel loss function is devised to generate adversarial perturbations that could achieve both visual and measure imperceptibility.
Experiments on large-scale benchmark datasets demonstrate the superiority of our proposed method in attacking the top-$k$ multi-label systems.
arXiv Detail & Related papers (2023-07-27T13:18:47Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
We propose a novel multi-view classification algorithm, termed trusted multi-view classification (TMC)
TMC provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
Both theoretical and experimental results validate the effectiveness of the proposed model in accuracy, robustness and trustworthiness.
arXiv Detail & Related papers (2022-04-25T03:48:49Z) - Trusted Multi-View Classification [76.73585034192894]
We propose a novel multi-view classification method, termed trusted multi-view classification.
It provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
The proposed algorithm jointly utilizes multiple views to promote both classification reliability and robustness.
arXiv Detail & Related papers (2021-02-03T13:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.