LLAMAPIE: Proactive In-Ear Conversation Assistants
- URL: http://arxiv.org/abs/2505.04066v2
- Date: Tue, 29 Jul 2025 02:03:32 GMT
- Title: LLAMAPIE: Proactive In-Ear Conversation Assistants
- Authors: Tuochao Chen, Nicholas Batchelder, Alisa Liu, Noah Smith, Shyamnath Gollakota,
- Abstract summary: We introduce LlamaPIE, the first real-time proactive assistant designed to enhance human conversations through discreet, concise guidance delivered via hearable devices.<n>Unlike traditional language models that require explicit user invocation, this assistant operates in the background, anticipating user needs without interrupting conversations.
- Score: 9.312108526830665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce LlamaPIE, the first real-time proactive assistant designed to enhance human conversations through discreet, concise guidance delivered via hearable devices. Unlike traditional language models that require explicit user invocation, this assistant operates in the background, anticipating user needs without interrupting conversations. We address several challenges, including determining when to respond, crafting concise responses that enhance conversations, leveraging knowledge of the user for context-aware assistance, and real-time, on-device processing. To achieve this, we construct a semi-synthetic dialogue dataset and propose a two-model pipeline: a small model that decides when to respond and a larger model that generates the response. We evaluate our approach on real-world datasets, demonstrating its effectiveness in providing helpful, unobtrusive assistance. User studies with our assistant, implemented on Apple Silicon M2 hardware, show a strong preference for the proactive assistant over both a baseline with no assistance and a reactive model, highlighting the potential of LlamaPie to enhance live conversations.
Related papers
- REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation [51.97224538045096]
We introduce REALTALK, a 21-day corpus of authentic messaging app dialogues.<n>We compare EI attributes and persona consistency to understand the challenges posed by real-world dialogues.<n>Our findings reveal that models struggle to simulate a user solely from dialogue history, while fine-tuning on specific user chats improves persona emulation.
arXiv Detail & Related papers (2025-02-18T20:29:01Z) - Data-Centric Improvements for Enhancing Multi-Modal Understanding in Spoken Conversation Modeling [13.628984890958314]
We introduce a data-centric customization approach for efficiently enhancing multimodal understanding in conversational speech modeling.<n>Our approach achieves state-of-the-art performance on the Spoken-SQuAD benchmark, using only 10% of the training data with open-weight models.<n>We also introduce ASK-QA, the first dataset for multi-turn spoken dialogue with ambiguous user requests and dynamic evaluation inputs.
arXiv Detail & Related papers (2024-12-20T15:43:09Z) - OmniFlatten: An End-to-end GPT Model for Seamless Voice Conversation [53.7173034249361]
End-to-end GPT-based model OmniFlatten capable of effectively modeling complex behaviors inherent natural conversations with low latency.<n>Our approach offers a simple modeling technique and a promising research direction for developing efficient and natural end-to-end full- spoken dialogue systems.
arXiv Detail & Related papers (2024-10-23T11:58:58Z) - Enabling Real-Time Conversations with Minimal Training Costs [61.80370154101649]
This paper presents a new duplex decoding approach that enhances large language models with duplex ability, requiring minimal training.
Experimental results indicate that our proposed method significantly enhances the naturalness and human-likeness of user-AI interactions with minimal training costs.
arXiv Detail & Related papers (2024-09-18T06:27:26Z) - Learning to Clarify: Multi-turn Conversations with Action-Based Contrastive Self-Training [33.57497419019826]
Action-Based Contrastive Self-Training allows for sample-efficient dialogue policy learning in multi-turn conversation.
ACT demonstrates substantial conversation modeling improvements over standard approaches to supervised fine-tuning and DPO.
arXiv Detail & Related papers (2024-05-31T22:44:48Z) - Chitchat as Interference: Adding User Backstories to Task-Oriented Dialogues [0.0]
We use few-shot prompting with Llama-2-70B to enhance the MultiWOZ dataset with user backstories.
We test two models: one trained solely on TODs and another trained on TODs with a preliminary chitchat interaction.
Our dataset can be effectively used for training purposes, enabling a system to consistently acknowledge the user's backstory.
arXiv Detail & Related papers (2024-02-23T10:27:42Z) - R2H: Building Multimodal Navigation Helpers that Respond to Help
Requests [30.695642371684663]
We first introduce a novel benchmark, Respond to Help Requests (R2H), to promote the development of multi-modal navigation helpers.
R2H mainly includes two tasks: (1) Respond to Dialog History (RDH), which assesses the helper agent's ability to generate informative responses based on a given dialog history, and (2) Respond during Interaction (RdI), which evaluates the effectiveness and efficiency of the response during consistent cooperation with a task performer.
arXiv Detail & Related papers (2023-05-23T17:12:09Z) - Duplex Conversation: Towards Human-like Interaction in Spoken Dialogue
System [120.70726465994781]
multimodal spoken dialogue system enables telephonebased agents to interact with customers like human.
We deploy Conversation Duplex Alibaba intelligent customer service to share lessons learned in production.
Online A/B experiments show in proposed system can significantly reduce response latency by 50%.
arXiv Detail & Related papers (2022-05-30T12:41:23Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
Existing studies in dialogue system research mostly treat task-oriented dialogue and chit-chat as separate domains.
We investigate how task-oriented dialogue and knowledge-grounded chit-chat can be effectively integrated into a single model.
arXiv Detail & Related papers (2022-05-11T16:01:03Z) - NaRLE: Natural Language Models using Reinforcement Learning with Emotion
Feedback [0.37277730514654556]
"NARLE" is a framework for improving the natural language understanding of dialogue systems online without the need to collect human labels for customer data.
For two intent classification problems, we empirically show that using reinforcement learning to fine tune the pre-trained supervised learning models improves performance up to 43%.
arXiv Detail & Related papers (2021-10-05T16:24:19Z) - Adding Chit-Chat to Enhance Task-Oriented Dialogues [36.93917437554091]
Chit-Chat can be added to task-oriented dialogues to make virtual assistant conversations more engaging and interactive.
We present our new chit-chat-based annotations to 23.8K dialogues from two popular task-oriented dialogue datasets.
We also propose three new models for adding chit-chat to task-oriented dialogues, explicitly trained to predict user goals and to generate contextually relevant chit-chat responses.
arXiv Detail & Related papers (2020-10-24T03:22:43Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.