Retrieval Augmented Time Series Forecasting
- URL: http://arxiv.org/abs/2505.04163v1
- Date: Wed, 07 May 2025 06:26:11 GMT
- Title: Retrieval Augmented Time Series Forecasting
- Authors: Sungwon Han, Seungeon Lee, Meeyoung Cha, Sercan O Arik, Jinsung Yoon,
- Abstract summary: Time series forecasting uses historical data to predict future trends.<n>We propose RAFT, a retrieval-augmented time series forecasting method.<n>RAFT consistently outperforms contemporary baselines with an average win ratio of 86%.
- Score: 23.032293033362752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting uses historical data to predict future trends, leveraging the relationships between past observations and available features. In this paper, we propose RAFT, a retrieval-augmented time series forecasting method to provide sufficient inductive biases and complement the model's learning capacity. When forecasting the subsequent time frames, we directly retrieve historical data candidates from the training dataset with patterns most similar to the input, and utilize the future values of these candidates alongside the inputs to obtain predictions. This simple approach augments the model's capacity by externally providing information about past patterns via retrieval modules. Our empirical evaluations on ten benchmark datasets show that RAFT consistently outperforms contemporary baselines with an average win ratio of 86%.
Related papers
- TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting [59.702504386429126]
TimeRAF is a Retrieval-Augmented Forecasting model that enhance zero-shot time series forecasting through retrieval-augmented techniques.<n>TimeRAF employs an end-to-end learnable retriever to extract valuable information from the knowledge base.
arXiv Detail & Related papers (2024-12-30T09:06:47Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
We develop a wavelet-based tokenizer that allows models to learn complex representations directly in the space of time-localized frequencies.<n>Our method first scales and decomposes the input time series, then thresholds and quantizes the wavelet coefficients, and finally pre-trains an autoregressive model to forecast coefficients for the forecast horizon.
arXiv Detail & Related papers (2024-12-06T18:22:59Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
Time series foundation models excel in zero-shot forecasting, handling diverse tasks without explicit training.
GIFT-Eval is a pioneering benchmark aimed at promoting evaluation across diverse datasets.
GIFT-Eval encompasses 23 datasets over 144,000 time series and 177 million data points.
arXiv Detail & Related papers (2024-10-14T11:29:38Z) - TimeGPT in Load Forecasting: A Large Time Series Model Perspective [38.92798207166188]
Machine learning models have made significant progress in load forecasting, but their forecast accuracy is limited in cases where historical load data is scarce.<n>This paper aims to discuss the potential of large time series models in load forecasting with scarce historical data.
arXiv Detail & Related papers (2024-04-07T09:05:09Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
We explore the application of Gaussian Processes (GPs) for predicting mean-reverting time series with an underlying structure.
GPs offer the potential to forecast not just the average prediction but the entire probability distribution over a future trajectory.
This is particularly beneficial in financial contexts, where accurate predictions alone may not suffice if incorrect volatility assessments lead to capital losses.
arXiv Detail & Related papers (2024-02-23T06:09:45Z) - Contrastive Difference Predictive Coding [79.74052624853303]
We introduce a temporal difference version of contrastive predictive coding that stitches together pieces of different time series data to decrease the amount of data required to learn predictions of future events.
We apply this representation learning method to derive an off-policy algorithm for goal-conditioned RL.
arXiv Detail & Related papers (2023-10-31T03:16:32Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Split Time Series into Patches: Rethinking Long-term Series Forecasting
with Dateformer [17.454822366228335]
Time is one of the most significant characteristics of time-series, yet has received insufficient attention.
We propose Dateformer who turns attention to modeling time instead of following the above practice.
Dateformer yields state-of-the-art accuracy with a 40% remarkable relative improvement, and broadens the maximum credible forecasting range to a half-yearly level.
arXiv Detail & Related papers (2022-07-12T08:58:44Z) - VQ-AR: Vector Quantized Autoregressive Probabilistic Time Series
Forecasting [10.605719154114354]
Time series models aim for accurate predictions of the future given the past, where the forecasts are used for important downstream tasks like business decision making.
In this paper, we introduce a novel autoregressive architecture, VQ-AR, which instead learns a emphdiscrete set of representations that are used to predict the future.
arXiv Detail & Related papers (2022-05-31T15:43:46Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Time-Series Imputation with Wasserstein Interpolation for Optimal
Look-Ahead-Bias and Variance Tradeoff [66.59869239999459]
In finance, imputation of missing returns may be applied prior to training a portfolio optimization model.
There is an inherent trade-off between the look-ahead-bias of using the full data set for imputation and the larger variance in the imputation from using only the training data.
We propose a Bayesian posterior consensus distribution which optimally controls the variance and look-ahead-bias trade-off in the imputation.
arXiv Detail & Related papers (2021-02-25T09:05:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.