All-optical temporal integration mediated by subwavelength heat antennas
- URL: http://arxiv.org/abs/2505.04405v2
- Date: Tue, 05 Aug 2025 14:09:26 GMT
- Title: All-optical temporal integration mediated by subwavelength heat antennas
- Authors: Yi Zhang, Nikolaos Farmakidis, Ioannis Roumpos, Miltiadis Moralis-Pegios, Apostolos Tsakyridis, June Sang Lee, Bowei Dong, Yuhan He, Samarth Aggarwal, Nikolaos Pleros, Harish Bhaskaran,
- Abstract summary: Optical neuromorphic computing system capable of processing input vectors exceeding 250,000 elements within a unified framework.<n>System harnesses optically driven thermo-optic modulation in standing wave optical fields, with titanium nano-antennas functioning as wavelength-selective absorbers.
- Score: 3.2288610972024854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical computing systems deliver unrivalled processing speeds for scalar operations. Yet, integrated implementations have been constrained to low-dimensional tensor operations that fall short of the vector dimensions required for modern artificial intelligence. We demonstrate an all-optical neuromorphic computing system based on time division multiplexing, capable of processing input vectors exceeding 250,000 elements within a unified framework. The platform harnesses optically driven thermo-optic modulation in standing wave optical fields, with titanium nano-antennas functioning as wavelength-selective absorbers. Counterintuitively, the thermal time dynamics of the system enable simultaneous time integration of ultra-fast (50GHz) signals and the application of programmable, non-linear activation functions, entirely within the optical domain. This unified framework constitutes a leap towards large-scale photonic computing that satisfies the dimensional requirements of AI workloads.
Related papers
- Hardware-Efficient Large-Scale Universal Linear Transformations for Optical Modes in the Synthetic Time Dimension [0.6384650391969042]
We introduce a hardware-efficient time-domain photonic processor that achieves at least an exponential reduction in component count.<n>Our results establish a practical pathway toward near-term, scalable, and reconfigurable photonic processors.
arXiv Detail & Related papers (2025-05-01T21:14:48Z) - Engineering nonlinear activation functions for all-optical neural networks via quantum interference [0.0]
All-optical neural networks (AONNs) promise transformative gains in speed and energy efficiency for artificial intelligence (AI)<n>We present a low-power nonlinear activation scheme based on a three-level quantum system driven by dual laser fields.<n>These results mark a major advance toward scalable, high-speed, and energy-efficient optical AI hardware.
arXiv Detail & Related papers (2025-04-05T01:17:06Z) - Neuromorphic spatiotemporal optical flow: Enabling ultrafast visual perception beyond human capabilities [12.409087198219693]
We introduce a neuromorphic optical flow approach that addresses delay bottlenecks by encoding temporal information directly in a synaptic transistor array.<n>Compared to conventional spatial-only optical flow methods, our system offers the spatial-temporal consistency of motion information.<n>In software benchmarks, our system outperforms state-of-the-art algorithms with a 400% speedup.
arXiv Detail & Related papers (2024-09-10T10:59:32Z) - TeMPO: Efficient Time-Multiplexed Dynamic Photonic Tensor Core for Edge
AI with Compact Slow-Light Electro-Optic Modulator [44.74560543672329]
We present a time-multiplexed dynamic photonic tensor accelerator, dubbed TeMPO, with cross-layer device/circuit/architecture customization.
We achieve a 368.6 TOPS peak performance, 22.3 TOPS/W energy efficiency, and 1.2 TOPS/mm$2$ compute density.
This work signifies the power of cross-layer co-design and domain-specific customization, paving the way for future electronic-photonic accelerators.
arXiv Detail & Related papers (2024-02-12T03:40:32Z) - All-optical modulation with single-photons using electron avalanche [66.27103948750306]
We demonstrate all-optical modulation enabled by electron avalanche process in silicon.<n>Our approach opens the possibility of gigahertz-speed, and potentially even faster, optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Characterization of multi-mode linear optical networks [0.0]
We formulate efficient procedures for the characterization of optical circuits in the presence of imperfections.
We show the viability of this approach in an experimentally relevant scenario, defined by a tunable integrated photonic circuit.
Our findings can find application in a wide range of optical setups, based both on bulk and integrated configurations.
arXiv Detail & Related papers (2023-04-13T13:09:14Z) - Linear Optical Quantum Computation with Frequency-Comb Qubits and
Passive Devices [0.0]
We propose a linear optical quantum computation scheme using time-frequency degree of freedom.
We show that current technologies almost meet the requirements for fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-01-09T07:36:53Z) - All-Photonic Artificial Neural Network Processor Via Non-linear Optics [0.0]
We propose an all-photonic artificial neural network processor.
Information is encoded in the amplitudes of frequency modes that act as neurons.
Our architecture is unique in providing a completely unitary, reversible mode of computation.
arXiv Detail & Related papers (2022-05-17T19:55:30Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Fast Generation and Detection of Spatial Modes of Light using an
Acousto-Optic Modulator [62.997667081978825]
spatial modes of light provide a high-dimensional space that can be used to encode both classical and quantum information.
Current approaches for dynamically generating and measuring these modes are slow, due to the need to reconfigure a high-resolution phase mask.
We experimentally realize this approach, using a double-pass AOM to generate one of five orbital angular momentum states.
We are able to reconstruct arbitrary states in under 1 ms with an average fidelity of 96.9%.
arXiv Detail & Related papers (2020-07-31T14:58:30Z) - Thermal phase shifters for femtosecond laser written photonic integrated
circuits [58.720142291102135]
Photonic integrated circuits (PICs) are acknowledged as an effective solution to fulfill the demanding requirements of many practical applications in both classical and quantum optics.
Phase shifters integrated in the photonic circuit offer the possibility to dynamically reconfigure its properties in order to fine tune its operation or to produce adaptive circuits.
We show how thermal shifters to reconfigure photonic circuits can be solved by a careful design of the thermal shifters and by choosing the most appropriate way to drive them.
arXiv Detail & Related papers (2020-04-23T20:09:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.